1
|
|
|
"""Definitions for command-line (Click) commands for invoking Annif |
2
|
|
|
operations and printing the results to console.""" |
3
|
|
|
|
4
|
|
|
|
5
|
|
|
import collections |
6
|
|
|
import json |
7
|
|
|
import os.path |
8
|
|
|
import re |
9
|
|
|
import sys |
10
|
|
|
|
11
|
|
|
import click |
12
|
|
|
import click_log |
13
|
|
|
from flask.cli import FlaskGroup |
14
|
|
|
|
15
|
|
|
import annif |
16
|
|
|
import annif.corpus |
17
|
|
|
import annif.parallel |
18
|
|
|
import annif.project |
19
|
|
|
import annif.registry |
20
|
|
|
from annif import cli_util |
21
|
|
|
from annif.exception import NotInitializedException, NotSupportedException |
22
|
|
|
from annif.project import Access |
23
|
|
|
from annif.suggestion import ListSuggestionResult, SuggestionFilter |
24
|
|
|
from annif.util import metric_code |
25
|
|
|
|
26
|
|
|
logger = annif.logger |
27
|
|
|
click_log.basic_config(logger) |
28
|
|
|
|
29
|
|
|
cli = FlaskGroup(create_app=annif.create_app, add_version_option=False) |
30
|
|
|
cli = click.version_option(message="%(version)s")(cli) |
31
|
|
|
|
32
|
|
|
|
33
|
|
|
@cli.command("list-projects") |
34
|
|
|
@cli_util.common_options |
35
|
|
|
@click_log.simple_verbosity_option(logger, default="ERROR") |
36
|
|
|
def run_list_projects(): |
37
|
|
|
""" |
38
|
|
|
List available projects. |
39
|
|
|
\f |
40
|
|
|
Show a list of currently defined projects. Projects are defined in a |
41
|
|
|
configuration file, normally called ``projects.cfg``. See `Project |
42
|
|
|
configuration |
43
|
|
|
<https://github.com/NatLibFi/Annif/wiki/Project-configuration>`_ |
44
|
|
|
for details. |
45
|
|
|
""" |
46
|
|
|
|
47
|
|
|
template = "{0: <25}{1: <45}{2: <10}{3: <7}" |
48
|
|
|
header = template.format("Project ID", "Project Name", "Language", "Trained") |
49
|
|
|
click.echo(header) |
50
|
|
|
click.echo("-" * len(header)) |
51
|
|
|
for proj in annif.registry.get_projects(min_access=Access.private).values(): |
52
|
|
|
click.echo( |
53
|
|
|
template.format( |
54
|
|
|
proj.project_id, proj.name, proj.language, str(proj.is_trained) |
55
|
|
|
) |
56
|
|
|
) |
57
|
|
|
|
58
|
|
|
|
59
|
|
|
@cli.command("show-project") |
60
|
|
|
@click.argument("project_id", shell_complete=cli_util.complete_project_id) |
61
|
|
|
@cli_util.common_options |
62
|
|
|
def run_show_project(project_id): |
63
|
|
|
""" |
64
|
|
|
Show information about a project. |
65
|
|
|
""" |
66
|
|
|
|
67
|
|
|
proj = cli_util.get_project(project_id) |
68
|
|
|
click.echo(f"Project ID: {proj.project_id}") |
69
|
|
|
click.echo(f"Project Name: {proj.name}") |
70
|
|
|
click.echo(f"Language: {proj.language}") |
71
|
|
|
click.echo(f"Vocabulary: {proj.vocab.vocab_id}") |
72
|
|
|
click.echo(f"Vocab language: {proj.vocab_lang}") |
73
|
|
|
click.echo(f"Access: {proj.access.name}") |
74
|
|
|
click.echo(f"Trained: {proj.is_trained}") |
75
|
|
|
click.echo(f"Modification time: {proj.modification_time}") |
76
|
|
|
|
77
|
|
|
|
78
|
|
|
@cli.command("clear") |
79
|
|
|
@click.argument("project_id", shell_complete=cli_util.complete_project_id) |
80
|
|
|
@cli_util.common_options |
81
|
|
|
def run_clear_project(project_id): |
82
|
|
|
""" |
83
|
|
|
Initialize the project to its original, untrained state. |
84
|
|
|
""" |
85
|
|
|
proj = cli_util.get_project(project_id) |
86
|
|
|
proj.remove_model_data() |
87
|
|
|
|
88
|
|
|
|
89
|
|
|
@cli.command("list-vocabs") |
90
|
|
|
@cli_util.common_options |
91
|
|
|
@click_log.simple_verbosity_option(logger, default="ERROR") |
92
|
|
|
def run_list_vocabs(): |
93
|
|
|
""" |
94
|
|
|
List available vocabularies. |
95
|
|
|
""" |
96
|
|
|
|
97
|
|
|
template = "{0: <20}{1: <20}{2: >10} {3: <6}" |
98
|
|
|
header = template.format("Vocabulary ID", "Languages", "Size", "Loaded") |
99
|
|
|
click.echo(header) |
100
|
|
|
click.echo("-" * len(header)) |
101
|
|
|
for vocab in annif.registry.get_vocabs(min_access=Access.private).values(): |
102
|
|
|
try: |
103
|
|
|
languages = ",".join(sorted(vocab.languages)) |
104
|
|
|
size = len(vocab) |
105
|
|
|
loaded = True |
106
|
|
|
except NotInitializedException: |
107
|
|
|
languages = "-" |
108
|
|
|
size = "-" |
109
|
|
|
loaded = False |
110
|
|
|
click.echo(template.format(vocab.vocab_id, languages, size, str(loaded))) |
111
|
|
|
|
112
|
|
|
|
113
|
|
|
@cli.command("load-vocab") |
114
|
|
|
@click.argument("vocab_id", shell_complete=cli_util.complete_vocab_id) |
115
|
|
|
@click.argument("subjectfile", type=click.Path(exists=True, dir_okay=False)) |
116
|
|
|
@click.option("--language", "-L", help="Language of subject file") |
117
|
|
|
@click.option( |
118
|
|
|
"--force", |
119
|
|
|
"-f", |
120
|
|
|
default=False, |
121
|
|
|
is_flag=True, |
122
|
|
|
help="Replace existing vocabulary completely instead of updating it", |
123
|
|
|
) |
124
|
|
|
@cli_util.common_options |
125
|
|
|
def run_load_vocab(vocab_id, language, force, subjectfile): |
126
|
|
|
""" |
127
|
|
|
Load a vocabulary from a subject file. |
128
|
|
|
""" |
129
|
|
|
vocab = cli_util.get_vocab(vocab_id) |
130
|
|
|
if annif.corpus.SubjectFileSKOS.is_rdf_file(subjectfile): |
131
|
|
|
# SKOS/RDF file supported by rdflib |
132
|
|
|
subjects = annif.corpus.SubjectFileSKOS(subjectfile) |
133
|
|
|
click.echo(f"Loading vocabulary from SKOS file {subjectfile}...") |
134
|
|
|
elif annif.corpus.SubjectFileCSV.is_csv_file(subjectfile): |
135
|
|
|
# CSV file |
136
|
|
|
subjects = annif.corpus.SubjectFileCSV(subjectfile) |
137
|
|
|
click.echo(f"Loading vocabulary from CSV file {subjectfile}...") |
138
|
|
|
else: |
139
|
|
|
# probably a TSV file - we need to know its language |
140
|
|
|
if not language: |
141
|
|
|
click.echo( |
142
|
|
|
"Please use --language option to set the language of a TSV vocabulary.", |
143
|
|
|
err=True, |
144
|
|
|
) |
145
|
|
|
sys.exit(1) |
146
|
|
|
click.echo(f"Loading vocabulary from TSV file {subjectfile}...") |
147
|
|
|
subjects = annif.corpus.SubjectFileTSV(subjectfile, language) |
148
|
|
|
vocab.load_vocabulary(subjects, force=force) |
149
|
|
|
|
150
|
|
|
|
151
|
|
|
@cli.command("train") |
152
|
|
|
@click.argument("project_id", shell_complete=cli_util.complete_project_id) |
153
|
|
|
@click.argument("paths", type=click.Path(exists=True), nargs=-1) |
154
|
|
|
@click.option( |
155
|
|
|
"--cached/--no-cached", |
156
|
|
|
"-c/-C", |
157
|
|
|
default=False, |
158
|
|
|
help="Reuse preprocessed training data from previous run", |
159
|
|
|
) |
160
|
|
|
@click.option( |
161
|
|
|
"--jobs", |
162
|
|
|
"-j", |
163
|
|
|
default=0, |
164
|
|
|
help="Number of parallel jobs (0 means choose automatically)", |
165
|
|
|
) |
166
|
|
|
@cli_util.docs_limit_option |
167
|
|
|
@cli_util.backend_param_option |
168
|
|
|
@cli_util.common_options |
169
|
|
|
def run_train(project_id, paths, cached, docs_limit, jobs, backend_param): |
170
|
|
|
""" |
171
|
|
|
Train a project on a collection of documents. |
172
|
|
|
\f |
173
|
|
|
This will train the project using the documents from ``PATHS`` (directories |
174
|
|
|
or possibly gzipped TSV files) in a single batch operation. If ``--cached`` |
175
|
|
|
is set, preprocessed training data from the previous run is reused instead |
176
|
|
|
of documents input; see `Reusing preprocessed training data |
177
|
|
|
<https://github.com/NatLibFi/Annif/wiki/ |
178
|
|
|
Reusing-preprocessed-training-data>`_. |
179
|
|
|
""" |
180
|
|
|
proj = cli_util.get_project(project_id) |
181
|
|
|
backend_params = cli_util.parse_backend_params(backend_param, proj) |
182
|
|
|
if cached: |
183
|
|
|
if len(paths) > 0: |
184
|
|
|
raise click.UsageError( |
185
|
|
|
"Corpus paths cannot be given when using --cached option." |
186
|
|
|
) |
187
|
|
|
documents = "cached" |
188
|
|
|
else: |
189
|
|
|
documents = cli_util.open_documents( |
190
|
|
|
paths, proj.subjects, proj.vocab_lang, docs_limit |
191
|
|
|
) |
192
|
|
|
proj.train(documents, backend_params, jobs) |
193
|
|
|
|
194
|
|
|
|
195
|
|
|
@cli.command("learn") |
196
|
|
|
@click.argument("project_id", shell_complete=cli_util.complete_project_id) |
197
|
|
|
@click.argument("paths", type=click.Path(exists=True), nargs=-1) |
198
|
|
|
@cli_util.docs_limit_option |
199
|
|
|
@cli_util.backend_param_option |
200
|
|
|
@cli_util.common_options |
201
|
|
|
def run_learn(project_id, paths, docs_limit, backend_param): |
202
|
|
|
""" |
203
|
|
|
Further train an existing project on a collection of documents. |
204
|
|
|
\f |
205
|
|
|
Similar to the ``train`` command. This will continue training an already |
206
|
|
|
trained project using the documents given by ``PATHS`` in a single batch |
207
|
|
|
operation. Not supported by all backends. |
208
|
|
|
""" |
209
|
|
|
proj = cli_util.get_project(project_id) |
210
|
|
|
backend_params = cli_util.parse_backend_params(backend_param, proj) |
211
|
|
|
documents = cli_util.open_documents( |
212
|
|
|
paths, proj.subjects, proj.vocab_lang, docs_limit |
213
|
|
|
) |
214
|
|
|
proj.learn(documents, backend_params) |
215
|
|
|
|
216
|
|
|
|
217
|
|
|
@cli.command("suggest") |
218
|
|
|
@click.argument("project_id", shell_complete=cli_util.complete_project_id) |
219
|
|
|
@click.argument( |
220
|
|
|
"paths", type=click.Path(dir_okay=False, exists=True, allow_dash=True), nargs=-1 |
221
|
|
|
) |
222
|
|
|
@click.option("--limit", "-l", default=10, help="Maximum number of subjects") |
223
|
|
|
@click.option("--threshold", "-t", default=0.0, help="Minimum score threshold") |
224
|
|
|
@click.option("--language", "-L", help="Language of subject labels") |
225
|
|
|
@cli_util.docs_limit_option |
226
|
|
|
@cli_util.backend_param_option |
227
|
|
|
@cli_util.common_options |
228
|
|
|
def run_suggest( |
229
|
|
|
project_id, paths, limit, threshold, language, backend_param, docs_limit |
230
|
|
|
): |
231
|
|
|
""" |
232
|
|
|
Suggest subjects for a single document from standard input or for one or more |
233
|
|
|
document file(s) given its/their path(s). |
234
|
|
|
\f |
235
|
|
|
This will read a text document from standard input and suggest subjects for |
236
|
|
|
it, or if given path(s) to file(s), suggest subjects for it/them. |
237
|
|
|
""" |
238
|
|
|
project = cli_util.get_project(project_id) |
239
|
|
|
lang = language or project.vocab_lang |
240
|
|
|
if lang not in project.vocab.languages: |
241
|
|
|
raise click.BadParameter(f'language "{lang}" not supported by vocabulary') |
242
|
|
|
backend_params = cli_util.parse_backend_params(backend_param, project) |
243
|
|
|
hit_filter = SuggestionFilter(project.subjects, limit, threshold) |
244
|
|
|
|
245
|
|
|
if paths and not (len(paths) == 1 and paths[0] == "-"): |
246
|
|
|
docs = cli_util.open_text_documents(paths, docs_limit) |
247
|
|
|
subject_sets = project.suggest_corpus(docs, backend_params) |
248
|
|
|
for ( |
249
|
|
|
subjects, |
250
|
|
|
path, |
251
|
|
|
) in zip(subject_sets, paths): |
252
|
|
|
click.echo(f"Suggestions for {path}") |
253
|
|
|
hits = hit_filter(subjects) |
254
|
|
|
cli_util.show_hits(hits, project, lang) |
255
|
|
|
else: |
256
|
|
|
text = sys.stdin.read() |
257
|
|
|
hits = hit_filter(project.suggest([text], backend_params)[0]) |
258
|
|
|
cli_util.show_hits(hits, project, lang) |
259
|
|
|
|
260
|
|
|
|
261
|
|
|
@cli.command("index") |
262
|
|
|
@click.argument("project_id", shell_complete=cli_util.complete_project_id) |
263
|
|
|
@click.argument("directory", type=click.Path(exists=True, file_okay=False)) |
264
|
|
|
@click.option( |
265
|
|
|
"--suffix", "-s", default=".annif", help="File name suffix for result files" |
266
|
|
|
) |
267
|
|
|
@click.option( |
268
|
|
|
"--force/--no-force", |
269
|
|
|
"-f/-F", |
270
|
|
|
default=False, |
271
|
|
|
help="Force overwriting of existing result files", |
272
|
|
|
) |
273
|
|
|
@click.option("--limit", "-l", default=10, help="Maximum number of subjects") |
274
|
|
|
@click.option("--threshold", "-t", default=0.0, help="Minimum score threshold") |
275
|
|
|
@click.option("--language", "-L", help="Language of subject labels") |
276
|
|
|
@cli_util.backend_param_option |
277
|
|
|
@cli_util.common_options |
278
|
|
|
def run_index( |
279
|
|
|
project_id, directory, suffix, force, limit, threshold, language, backend_param |
280
|
|
|
): |
281
|
|
|
""" |
282
|
|
|
Index a directory with documents, suggesting subjects for each document. |
283
|
|
|
Write the results in TSV files with the given suffix (``.annif`` by |
284
|
|
|
default). |
285
|
|
|
""" |
286
|
|
|
project = cli_util.get_project(project_id) |
287
|
|
|
lang = language or project.vocab_lang |
288
|
|
|
if lang not in project.vocab.languages: |
289
|
|
|
raise click.BadParameter(f'language "{lang}" not supported by vocabulary') |
290
|
|
|
backend_params = cli_util.parse_backend_params(backend_param, project) |
291
|
|
|
hit_filter = SuggestionFilter(project.subjects, limit, threshold) |
292
|
|
|
|
293
|
|
|
documents = annif.corpus.DocumentDirectory( |
294
|
|
|
directory, None, None, require_subjects=False |
295
|
|
|
) |
296
|
|
|
subject_sets = project.suggest_corpus(documents, backend_params) |
297
|
|
|
|
298
|
|
|
for (docfilename, _), subjects in zip(documents, subject_sets): |
299
|
|
|
subjectfilename = re.sub(r"\.txt$", suffix, docfilename) |
300
|
|
|
if os.path.exists(subjectfilename) and not force: |
301
|
|
|
click.echo( |
302
|
|
|
"Not overwriting {} (use --force to override)".format(subjectfilename) |
303
|
|
|
) |
304
|
|
|
continue |
305
|
|
|
hits = hit_filter(subjects) |
306
|
|
|
with open(subjectfilename, "w", encoding="utf-8") as subjfile: |
307
|
|
|
cli_util.show_hits(hits, project, lang, file=subjfile) |
308
|
|
|
|
309
|
|
|
|
310
|
|
|
@cli.command("eval") |
311
|
|
|
@click.argument("project_id", shell_complete=cli_util.complete_project_id) |
312
|
|
|
@click.argument("paths", type=click.Path(exists=True), nargs=-1) |
313
|
|
|
@click.option("--limit", "-l", default=10, help="Maximum number of subjects") |
314
|
|
|
@click.option("--threshold", "-t", default=0.0, help="Minimum score threshold") |
315
|
|
|
@click.option( |
316
|
|
|
"--metric", |
317
|
|
|
"-m", |
318
|
|
|
default=[], |
319
|
|
|
multiple=True, |
320
|
|
|
help="Metric to calculate (default: all)", |
321
|
|
|
) |
322
|
|
|
@click.option( |
323
|
|
|
"--metrics-file", |
324
|
|
|
"-M", |
325
|
|
|
type=click.File("w", encoding="utf-8", errors="ignore", lazy=True), |
326
|
|
|
help="""Specify file in order to write evaluation metrics in JSON format. |
327
|
|
|
File directory must exist, existing file will be overwritten.""", |
328
|
|
|
) |
329
|
|
|
@click.option( |
330
|
|
|
"--results-file", |
331
|
|
|
"-r", |
332
|
|
|
type=click.File("w", encoding="utf-8", errors="ignore", lazy=True), |
333
|
|
|
help="""Specify file in order to write non-aggregated results per subject. |
334
|
|
|
File directory must exist, existing file will be overwritten.""", |
335
|
|
|
) |
336
|
|
|
@click.option( |
337
|
|
|
"--jobs", "-j", default=1, help="Number of parallel jobs (0 means all CPUs)" |
338
|
|
|
) |
339
|
|
|
@cli_util.docs_limit_option |
340
|
|
|
@cli_util.backend_param_option |
341
|
|
|
@cli_util.common_options |
342
|
|
|
def run_eval( |
343
|
|
|
project_id, |
344
|
|
|
paths, |
345
|
|
|
limit, |
346
|
|
|
threshold, |
347
|
|
|
docs_limit, |
348
|
|
|
metric, |
349
|
|
|
metrics_file, |
350
|
|
|
results_file, |
351
|
|
|
jobs, |
352
|
|
|
backend_param, |
353
|
|
|
): |
354
|
|
|
""" |
355
|
|
|
Suggest subjects for documents and evaluate the results by comparing |
356
|
|
|
against a gold standard. |
357
|
|
|
\f |
358
|
|
|
With this command the documents from ``PATHS`` (directories or possibly |
359
|
|
|
gzipped TSV files) will be assigned subject suggestions and then |
360
|
|
|
statistical measures are calculated that quantify how well the suggested |
361
|
|
|
subjects match the gold-standard subjects in the documents. |
362
|
|
|
|
363
|
|
|
Normally the output is the list of the metrics calculated across documents. |
364
|
|
|
If ``--results-file <FILENAME>`` option is given, the metrics are |
365
|
|
|
calculated separately for each subject, and written to the given file. |
366
|
|
|
""" |
367
|
|
|
|
368
|
|
|
project = cli_util.get_project(project_id) |
369
|
|
|
backend_params = cli_util.parse_backend_params(backend_param, project) |
370
|
|
|
|
371
|
|
|
import annif.eval |
372
|
|
|
|
373
|
|
|
eval_batch = annif.eval.EvaluationBatch(project.subjects) |
374
|
|
|
|
375
|
|
|
if results_file: |
376
|
|
|
try: |
377
|
|
|
print("", end="", file=results_file) |
378
|
|
|
click.echo( |
379
|
|
|
"Writing per subject evaluation results to {!s}".format( |
380
|
|
|
results_file.name |
381
|
|
|
) |
382
|
|
|
) |
383
|
|
|
except Exception as e: |
384
|
|
|
raise NotSupportedException( |
385
|
|
|
"cannot open results-file for writing: " + str(e) |
386
|
|
|
) |
387
|
|
|
corpus = cli_util.open_documents( |
388
|
|
|
paths, project.subjects, project.vocab_lang, docs_limit |
389
|
|
|
) |
390
|
|
|
jobs, pool_class = annif.parallel.get_pool(jobs) |
391
|
|
|
|
392
|
|
|
project.initialize(parallel=True) |
393
|
|
|
psmap = annif.parallel.ProjectSuggestMap( |
394
|
|
|
project.registry, [project_id], backend_params, limit, threshold |
395
|
|
|
) |
396
|
|
|
|
397
|
|
|
with pool_class(jobs) as pool: |
398
|
|
|
for hit_sets, subject_sets in pool.imap_unordered( |
399
|
|
|
psmap.suggest_batch, corpus.doc_batches |
400
|
|
|
): |
401
|
|
|
eval_batch.evaluate_many(hit_sets[project_id], subject_sets) |
402
|
|
|
|
403
|
|
|
template = "{0:<30}\t{1}" |
404
|
|
|
metrics = eval_batch.results( |
405
|
|
|
metrics=metric, results_file=results_file, language=project.vocab_lang |
406
|
|
|
) |
407
|
|
|
for metric, score in metrics.items(): |
408
|
|
|
click.echo(template.format(metric + ":", score)) |
409
|
|
|
if metrics_file: |
410
|
|
|
json.dump( |
411
|
|
|
{metric_code(mname): val for mname, val in metrics.items()}, |
412
|
|
|
metrics_file, |
413
|
|
|
indent=2, |
414
|
|
|
) |
415
|
|
|
|
416
|
|
|
|
417
|
|
|
FILTER_BATCH_MAX_LIMIT = 15 |
418
|
|
|
|
419
|
|
|
|
420
|
|
|
@cli.command("optimize") |
421
|
|
|
@click.argument("project_id", shell_complete=cli_util.complete_project_id) |
422
|
|
|
@click.argument("paths", type=click.Path(exists=True), nargs=-1) |
423
|
|
|
@cli_util.docs_limit_option |
424
|
|
|
@cli_util.backend_param_option |
425
|
|
|
@cli_util.common_options |
426
|
|
|
def run_optimize(project_id, paths, docs_limit, backend_param): |
427
|
|
|
""" |
428
|
|
|
Suggest subjects for documents, testing multiple limits and thresholds. |
429
|
|
|
\f |
430
|
|
|
This command will use different limit (maximum number of subjects) and |
431
|
|
|
score threshold values when assigning subjects to each document given by |
432
|
|
|
``PATHS`` and compare the results against the gold standard subjects in the |
433
|
|
|
documents. The output is a list of parameter combinations and their scores. |
434
|
|
|
From the output, you can determine the optimum limit and threshold |
435
|
|
|
parameters depending on which measure you want to target. |
436
|
|
|
""" |
437
|
|
|
project = cli_util.get_project(project_id) |
438
|
|
|
backend_params = cli_util.parse_backend_params(backend_param, project) |
439
|
|
|
|
440
|
|
|
filter_batches = cli_util.generate_filter_batches( |
441
|
|
|
project.subjects, FILTER_BATCH_MAX_LIMIT |
442
|
|
|
) |
443
|
|
|
|
444
|
|
|
ndocs = 0 |
445
|
|
|
corpus = cli_util.open_documents( |
446
|
|
|
paths, project.subjects, project.vocab_lang, docs_limit |
447
|
|
|
) |
448
|
|
|
for docs_batch in corpus.doc_batches: |
449
|
|
|
texts, subject_sets = zip(*[(doc.text, doc.subject_set) for doc in docs_batch]) |
450
|
|
|
raw_hit_sets = project.suggest(texts, backend_params) |
451
|
|
|
hit_sets = [ |
452
|
|
|
raw_hits.filter(project.subjects, limit=FILTER_BATCH_MAX_LIMIT) |
453
|
|
|
for raw_hits in raw_hit_sets |
454
|
|
|
] |
455
|
|
|
assert isinstance(hit_sets[0], ListSuggestionResult), ( |
456
|
|
|
"Optimize should only be done with ListSuggestionResult " |
457
|
|
|
+ "as it would be very slow with VectorSuggestionResult." |
458
|
|
|
) |
459
|
|
|
for hit_filter, filter_batch in filter_batches.values(): |
460
|
|
|
filtered_hits = [hit_filter(hits) for hits in hit_sets] |
461
|
|
|
filter_batch.evaluate_many(filtered_hits, subject_sets) |
462
|
|
|
ndocs += len(texts) |
463
|
|
|
|
464
|
|
|
click.echo("\t".join(("Limit", "Thresh.", "Prec.", "Rec.", "F1"))) |
465
|
|
|
|
466
|
|
|
best_scores = collections.defaultdict(float) |
467
|
|
|
best_params = {} |
468
|
|
|
|
469
|
|
|
template = "{:d}\t{:.02f}\t{:.04f}\t{:.04f}\t{:.04f}" |
470
|
|
|
# Store the batches in a list that gets consumed along the way |
471
|
|
|
# This way GC will have a chance to reclaim the memory |
472
|
|
|
filter_batches = list(filter_batches.items()) |
473
|
|
|
while filter_batches: |
474
|
|
|
params, filter_batch = filter_batches.pop(0) |
475
|
|
|
metrics = ["Precision (doc avg)", "Recall (doc avg)", "F1 score (doc avg)"] |
476
|
|
|
results = filter_batch[1].results(metrics=metrics) |
477
|
|
|
for metric, score in results.items(): |
478
|
|
|
if score >= best_scores[metric]: |
479
|
|
|
best_scores[metric] = score |
480
|
|
|
best_params[metric] = params |
481
|
|
|
click.echo( |
482
|
|
|
template.format( |
483
|
|
|
params[0], |
484
|
|
|
params[1], |
485
|
|
|
results["Precision (doc avg)"], |
486
|
|
|
results["Recall (doc avg)"], |
487
|
|
|
results["F1 score (doc avg)"], |
488
|
|
|
) |
489
|
|
|
) |
490
|
|
|
|
491
|
|
|
click.echo() |
492
|
|
|
template2 = "Best {:>19}: {:.04f}\tLimit: {:d}\tThreshold: {:.02f}" |
493
|
|
|
for metric in metrics: |
|
|
|
|
494
|
|
|
click.echo( |
495
|
|
|
template2.format( |
496
|
|
|
metric, |
497
|
|
|
best_scores[metric], |
498
|
|
|
best_params[metric][0], |
499
|
|
|
best_params[metric][1], |
500
|
|
|
) |
501
|
|
|
) |
502
|
|
|
click.echo("Documents evaluated:\t{}".format(ndocs)) |
503
|
|
|
|
504
|
|
|
|
505
|
|
|
@cli.command("hyperopt") |
506
|
|
|
@click.argument("project_id", shell_complete=cli_util.complete_project_id) |
507
|
|
|
@click.argument("paths", type=click.Path(exists=True), nargs=-1) |
508
|
|
|
@click.option("--trials", "-T", default=10, help="Number of trials") |
509
|
|
|
@click.option( |
510
|
|
|
"--jobs", "-j", default=1, help="Number of parallel runs (0 means all CPUs)" |
511
|
|
|
) |
512
|
|
|
@click.option( |
513
|
|
|
"--metric", "-m", default="NDCG", help="Metric to optimize (default: NDCG)" |
514
|
|
|
) |
515
|
|
|
@click.option( |
516
|
|
|
"--results-file", |
517
|
|
|
"-r", |
518
|
|
|
type=click.File("w", encoding="utf-8", errors="ignore", lazy=True), |
519
|
|
|
help="""Specify file path to write trial results as CSV. |
520
|
|
|
File directory must exist, existing file will be overwritten.""", |
521
|
|
|
) |
522
|
|
|
@cli_util.docs_limit_option |
523
|
|
|
@cli_util.common_options |
524
|
|
|
def run_hyperopt(project_id, paths, docs_limit, trials, jobs, metric, results_file): |
525
|
|
|
""" |
526
|
|
|
Optimize the hyperparameters of a project using validation documents from |
527
|
|
|
``PATHS``. Not supported by all backends. Output is a list of trial results |
528
|
|
|
and a report of the best performing parameters. |
529
|
|
|
""" |
530
|
|
|
proj = cli_util.get_project(project_id) |
531
|
|
|
documents = cli_util.open_documents( |
532
|
|
|
paths, proj.subjects, proj.vocab_lang, docs_limit |
533
|
|
|
) |
534
|
|
|
click.echo(f"Looking for optimal hyperparameters using {trials} trials") |
535
|
|
|
rec = proj.hyperopt(documents, trials, jobs, metric, results_file) |
536
|
|
|
click.echo(f"Got best {metric} score {rec.score:.4f} with:") |
537
|
|
|
click.echo("---") |
538
|
|
|
for line in rec.lines: |
539
|
|
|
click.echo(line) |
540
|
|
|
click.echo("---") |
541
|
|
|
|
542
|
|
|
|
543
|
|
|
@cli.command("completion") |
544
|
|
|
@click.option("--bash", "shell", flag_value="bash") |
545
|
|
|
@click.option("--zsh", "shell", flag_value="zsh") |
546
|
|
|
@click.option("--fish", "shell", flag_value="fish") |
547
|
|
|
def completion(shell): |
548
|
|
|
"""Generate autocompletion script for the given shell.""" |
549
|
|
|
import datetime |
550
|
|
|
|
551
|
|
|
if shell is None: |
552
|
|
|
click.echo("Shell not specified, try --bash, --zsh or --fish") |
553
|
|
|
return |
554
|
|
|
|
555
|
|
|
now = datetime.datetime.now() |
556
|
|
|
click.echo(f"# Generated by Annif on {now.strftime('%Y-%m-%d %H:%M:%S')}") |
557
|
|
|
|
558
|
|
|
if shell == "bash": |
559
|
|
|
script = os.popen("_ANNIF_COMPLETE=bash_source annif").read() |
560
|
|
|
elif shell == "zsh": |
561
|
|
|
script = os.popen("_ANNIF_COMPLETE=zsh_source annif").read() |
562
|
|
|
elif shell == "fish": |
563
|
|
|
script = os.popen("_ANNIF_COMPLETE=fish_source annif").read() |
564
|
|
|
click.echo(script) |
|
|
|
|
565
|
|
|
|
566
|
|
|
|
567
|
|
|
if __name__ == "__main__": |
568
|
|
|
cli() |
569
|
|
|
|