| 1 |  |  | """Neural network based ensemble backend that combines results from multiple | 
            
                                                                                                            
                            
            
                                    
            
            
                | 2 |  |  | projects.""" | 
            
                                                                                                            
                            
            
                                    
            
            
                | 3 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 4 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 5 |  |  | import os.path | 
            
                                                                                                            
                            
            
                                    
            
            
                | 6 |  |  | import shutil | 
            
                                                                                                            
                            
            
                                    
            
            
                | 7 |  |  | from io import BytesIO | 
            
                                                                                                            
                            
            
                                    
            
            
                | 8 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 9 |  |  | import joblib | 
            
                                                                                                            
                            
            
                                    
            
            
                | 10 |  |  | import lmdb | 
            
                                                                                                            
                            
            
                                    
            
            
                | 11 |  |  | import numpy as np | 
            
                                                                                                            
                            
            
                                    
            
            
                | 12 |  |  | import tensorflow.keras.backend as K | 
            
                                                                                                            
                            
            
                                    
            
            
                | 13 |  |  | from scipy.sparse import csc_matrix, csr_matrix | 
            
                                                                                                            
                            
            
                                    
            
            
                | 14 |  |  | from tensorflow.keras.layers import Add, Dense, Dropout, Flatten, Input, Layer | 
            
                                                                                                            
                            
            
                                    
            
            
                | 15 |  |  | from tensorflow.keras.models import Model, load_model | 
            
                                                                                                            
                            
            
                                    
            
            
                | 16 |  |  | from tensorflow.keras.utils import Sequence | 
            
                                                                                                            
                            
            
                                    
            
            
                | 17 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 18 |  |  | import annif.corpus | 
            
                                                                                                            
                            
            
                                    
            
            
                | 19 |  |  | import annif.parallel | 
            
                                                                                                            
                            
            
                                    
            
            
                | 20 |  |  | import annif.util | 
            
                                                                                                            
                            
            
                                    
            
            
                | 21 |  |  | from annif.exception import NotInitializedException, NotSupportedException | 
            
                                                                                                            
                            
            
                                    
            
            
                | 22 |  |  | from annif.suggestion import SuggestionBatch, vector_to_suggestions | 
            
                                                                                                            
                            
            
                                    
            
            
                | 23 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 24 |  |  | from . import backend, ensemble | 
            
                                                                                                            
                            
            
                                    
            
            
                | 25 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 26 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 27 |  |  | def idx_to_key(idx): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 28 |  |  |     """convert an integer index to a binary key for use in LMDB""" | 
            
                                                                                                            
                            
            
                                    
            
            
                | 29 |  |  |     return b"%08d" % idx | 
            
                                                                                                            
                            
            
                                    
            
            
                | 30 |  |  |  | 
            
                                                                                                            
                                                                
            
                                    
            
            
                | 31 |  |  |  | 
            
                                                                        
                            
            
                                    
            
            
                | 32 |  |  | def key_to_idx(key): | 
            
                                                                        
                            
            
                                    
            
            
                | 33 |  |  |     """convert a binary LMDB key to an integer index""" | 
            
                                                                        
                            
            
                                    
            
            
                | 34 |  |  |     return int(key) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 35 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 36 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 37 |  |  | class LMDBSequence(Sequence): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 38 |  |  |     """A sequence of samples stored in a LMDB database.""" | 
            
                                                                                                            
                            
            
                                    
            
            
                | 39 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 40 |  |  |     def __init__(self, txn, batch_size): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 41 |  |  |         self._txn = txn | 
            
                                                                                                            
                            
            
                                    
            
            
                | 42 |  |  |         cursor = txn.cursor() | 
            
                                                                                                            
                            
            
                                    
            
            
                | 43 |  |  |         if cursor.last(): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 44 |  |  |             # Counter holds the number of samples in the database | 
            
                                                                                                            
                            
            
                                    
            
            
                | 45 |  |  |             self._counter = key_to_idx(cursor.key()) + 1 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 46 |  |  |         else:  # empty database | 
            
                                                                                                            
                            
            
                                    
            
            
                | 47 |  |  |             self._counter = 0 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 48 |  |  |         self._batch_size = batch_size | 
            
                                                                                                            
                            
            
                                    
            
            
                | 49 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 50 |  |  |     def add_sample(self, inputs, targets): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 51 |  |  |         # use zero-padded 8-digit key | 
            
                                                                                                            
                            
            
                                    
            
            
                | 52 |  |  |         key = idx_to_key(self._counter) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 53 |  |  |         self._counter += 1 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 54 |  |  |         # convert the sample into a sparse matrix and serialize it as bytes | 
            
                                                                                                            
                            
            
                                    
            
            
                | 55 |  |  |         sample = (csc_matrix(inputs), csr_matrix(targets)) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 56 |  |  |         buf = BytesIO() | 
            
                                                                                                            
                            
            
                                    
            
            
                | 57 |  |  |         joblib.dump(sample, buf) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 58 |  |  |         buf.seek(0) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 59 |  |  |         self._txn.put(key, buf.read()) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 60 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 61 |  |  |     def __getitem__(self, idx): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 62 |  |  |         """get a particular batch of samples""" | 
            
                                                                                                            
                            
            
                                    
            
            
                | 63 |  |  |         cursor = self._txn.cursor() | 
            
                                                                                                            
                            
            
                                    
            
            
                | 64 |  |  |         first_key = idx * self._batch_size | 
            
                                                                                                            
                            
            
                                    
            
            
                | 65 |  |  |         cursor.set_key(idx_to_key(first_key)) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 66 |  |  |         input_arrays = [] | 
            
                                                                                                            
                            
            
                                    
            
            
                | 67 |  |  |         target_arrays = [] | 
            
                                                                                                            
                            
            
                                    
            
            
                | 68 |  |  |         for key, value in cursor.iternext(): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 69 |  |  |             if key_to_idx(key) >= (first_key + self._batch_size): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 70 |  |  |                 break | 
            
                                                                                                            
                            
            
                                    
            
            
                | 71 |  |  |             input_csr, target_csr = joblib.load(BytesIO(value)) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 72 |  |  |             input_arrays.append(input_csr.toarray()) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 73 |  |  |             target_arrays.append(target_csr.toarray().flatten()) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 74 |  |  |         return np.array(input_arrays), np.array(target_arrays) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 75 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 76 |  |  |     def __len__(self): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 77 |  |  |         """return the number of available batches""" | 
            
                                                                                                            
                            
            
                                    
            
            
                | 78 |  |  |         return int(np.ceil(self._counter / self._batch_size)) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 79 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 80 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 81 |  |  | class MeanLayer(Layer): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 82 |  |  |     """Custom Keras layer that calculates mean values along the 2nd axis.""" | 
            
                                                                                                            
                            
            
                                    
            
            
                | 83 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 84 |  |  |     def call(self, inputs): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 85 |  |  |         return K.mean(inputs, axis=2) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 86 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 87 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 88 |  |  | class NNEnsembleBackend(backend.AnnifLearningBackend, ensemble.BaseEnsembleBackend): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 89 |  |  |     """Neural network ensemble backend that combines results from multiple | 
            
                                                                                                            
                            
            
                                    
            
            
                | 90 |  |  |     projects""" | 
            
                                                                                                            
                            
            
                                    
            
            
                | 91 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 92 |  |  |     name = "nn_ensemble" | 
            
                                                                                                            
                            
            
                                    
            
            
                | 93 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 94 |  |  |     MODEL_FILE = "nn-model.h5" | 
            
                                                                                                            
                            
            
                                    
            
            
                | 95 |  |  |     LMDB_FILE = "nn-train.mdb" | 
            
                                                                                                            
                            
            
                                    
            
            
                | 96 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 97 |  |  |     DEFAULT_PARAMETERS = { | 
            
                                                                                                            
                            
            
                                    
            
            
                | 98 |  |  |         "nodes": 100, | 
            
                                                                                                            
                            
            
                                    
            
            
                | 99 |  |  |         "dropout_rate": 0.2, | 
            
                                                                                                            
                            
            
                                    
            
            
                | 100 |  |  |         "optimizer": "adam", | 
            
                                                                                                            
                            
            
                                    
            
            
                | 101 |  |  |         "epochs": 10, | 
            
                                                                                                            
                            
            
                                    
            
            
                | 102 |  |  |         "learn-epochs": 1, | 
            
                                                                                                            
                            
            
                                    
            
            
                | 103 |  |  |         "lmdb_map_size": 1024 * 1024 * 1024, | 
            
                                                                                                            
                            
            
                                    
            
            
                | 104 |  |  |     } | 
            
                                                                                                            
                            
            
                                    
            
            
                | 105 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 106 |  |  |     # defaults for uninitialized instances | 
            
                                                                                                            
                            
            
                                    
            
            
                | 107 |  |  |     _model = None | 
            
                                                                                                            
                            
            
                                    
            
            
                | 108 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 109 |  |  |     def default_params(self): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 110 |  |  |         params = backend.AnnifBackend.DEFAULT_PARAMETERS.copy() | 
            
                                                                                                            
                            
            
                                    
            
            
                | 111 |  |  |         params.update(self.DEFAULT_PARAMETERS) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 112 |  |  |         return params | 
            
                                                                                                            
                            
            
                                    
            
            
                | 113 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 114 |  |  |     def initialize(self, parallel=False): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 115 |  |  |         super().initialize(parallel) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 116 |  |  |         if self._model is not None: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 117 |  |  |             return  # already initialized | 
            
                                                                                                            
                            
            
                                    
            
            
                | 118 |  |  |         if parallel: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 119 |  |  |             # Don't load TF model just before parallel execution, | 
            
                                                                                                            
                            
            
                                    
            
            
                | 120 |  |  |             # since it won't work after forking worker processes | 
            
                                                                                                            
                            
            
                                    
            
            
                | 121 |  |  |             return | 
            
                                                                                                            
                            
            
                                    
            
            
                | 122 |  |  |         model_filename = os.path.join(self.datadir, self.MODEL_FILE) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 123 |  |  |         if not os.path.exists(model_filename): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 124 |  |  |             raise NotInitializedException( | 
            
                                                                                                            
                            
            
                                    
            
            
                | 125 |  |  |                 "model file {} not found".format(model_filename), | 
            
                                                                                                            
                            
            
                                    
            
            
                | 126 |  |  |                 backend_id=self.backend_id, | 
            
                                                                                                            
                            
            
                                    
            
            
                | 127 |  |  |             ) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 128 |  |  |         self.debug("loading Keras model from {}".format(model_filename)) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 129 |  |  |         self._model = load_model( | 
            
                                                                                                            
                            
            
                                    
            
            
                | 130 |  |  |             model_filename, custom_objects={"MeanLayer": MeanLayer} | 
            
                                                                                                            
                            
            
                                    
            
            
                | 131 |  |  |         ) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 132 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 133 |  |  |     def _merge_source_batches(self, batch_by_source, sources, params): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 134 |  |  |         src_weight = dict(sources) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 135 |  |  |         score_vectors = np.array( | 
            
                                                                                                            
                            
            
                                    
            
            
                | 136 |  |  |             [ | 
            
                                                                                                            
                            
            
                                    
            
            
                | 137 |  |  |                 [ | 
            
                                                                                                            
                            
            
                                    
            
            
                | 138 |  |  |                     np.sqrt(suggestions.as_vector()) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 139 |  |  |                     * src_weight[project_id] | 
            
                                                                                                            
                            
            
                                    
            
            
                | 140 |  |  |                     * len(batch_by_source) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 141 |  |  |                     for suggestions in batch | 
            
                                                                                                            
                            
            
                                    
            
            
                | 142 |  |  |                 ] | 
            
                                                                                                            
                            
            
                                    
            
            
                | 143 |  |  |                 for project_id, batch in batch_by_source.items() | 
            
                                                                                                            
                            
            
                                    
            
            
                | 144 |  |  |             ], | 
            
                                                                                                            
                            
            
                                    
            
            
                | 145 |  |  |             dtype=np.float32, | 
            
                                                                                                            
                            
            
                                    
            
            
                | 146 |  |  |         ).transpose(1, 2, 0) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 147 |  |  |         prediction = self._model(score_vectors).numpy() | 
            
                                                                                                            
                            
            
                                    
            
            
                | 148 |  |  |         return SuggestionBatch.from_sequence( | 
            
                                                                                                            
                            
            
                                    
            
            
                | 149 |  |  |             [ | 
            
                                                                                                            
                            
            
                                    
            
            
                | 150 |  |  |                 vector_to_suggestions(row, limit=int(params["limit"])) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 151 |  |  |                 for row in prediction | 
            
                                                                                                            
                            
            
                                    
            
            
                | 152 |  |  |             ], | 
            
                                                                                                            
                            
            
                                    
            
            
                | 153 |  |  |             self.project.subjects, | 
            
                                                                                                            
                            
            
                                    
            
            
                | 154 |  |  |         ) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 155 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 156 |  |  |     def _create_model(self, sources): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 157 |  |  |         self.info("creating NN ensemble model") | 
            
                                                                                                            
                            
            
                                    
            
            
                | 158 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 159 |  |  |         inputs = Input(shape=(len(self.project.subjects), len(sources))) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 160 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 161 |  |  |         flat_input = Flatten()(inputs) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 162 |  |  |         drop_input = Dropout(rate=float(self.params["dropout_rate"]))(flat_input) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 163 |  |  |         hidden = Dense(int(self.params["nodes"]), activation="relu")(drop_input) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 164 |  |  |         drop_hidden = Dropout(rate=float(self.params["dropout_rate"]))(hidden) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 165 |  |  |         delta = Dense( | 
            
                                                                                                            
                            
            
                                    
            
            
                | 166 |  |  |             len(self.project.subjects), | 
            
                                                                                                            
                            
            
                                    
            
            
                | 167 |  |  |             kernel_initializer="zeros", | 
            
                                                                                                            
                            
            
                                    
            
            
                | 168 |  |  |             bias_initializer="zeros", | 
            
                                                                                                            
                            
            
                                    
            
            
                | 169 |  |  |         )(drop_hidden) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 170 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 171 |  |  |         mean = MeanLayer()(inputs) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 172 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 173 |  |  |         predictions = Add()([mean, delta]) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 174 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 175 |  |  |         self._model = Model(inputs=inputs, outputs=predictions) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 176 |  |  |         self._model.compile( | 
            
                                                                                                            
                            
            
                                    
            
            
                | 177 |  |  |             optimizer=self.params["optimizer"], | 
            
                                                                                                            
                            
            
                                    
            
            
                | 178 |  |  |             loss="binary_crossentropy", | 
            
                                                                                                            
                            
            
                                    
            
            
                | 179 |  |  |             metrics=["top_k_categorical_accuracy"], | 
            
                                                                                                            
                            
            
                                    
            
            
                | 180 |  |  |         ) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 181 |  |  |         if "lr" in self.params: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 182 |  |  |             self._model.optimizer.learning_rate.assign(float(self.params["lr"])) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 183 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 184 |  |  |         summary = [] | 
            
                                                                                                            
                            
            
                                    
            
            
                | 185 |  |  |         self._model.summary(print_fn=summary.append) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 186 |  |  |         self.debug("Created model: \n" + "\n".join(summary)) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 187 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 188 |  |  |     def _train(self, corpus, params, jobs=0): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 189 |  |  |         sources = annif.util.parse_sources(self.params["sources"]) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 190 |  |  |         self._create_model(sources) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 191 |  |  |         self._fit_model( | 
            
                                                                                                            
                            
            
                                    
            
            
                | 192 |  |  |             corpus, | 
            
                                                                                                            
                            
            
                                    
            
            
                | 193 |  |  |             epochs=int(params["epochs"]), | 
            
                                                                                                            
                            
            
                                    
            
            
                | 194 |  |  |             lmdb_map_size=int(params["lmdb_map_size"]), | 
            
                                                                                                            
                            
            
                                    
            
            
                | 195 |  |  |             n_jobs=jobs, | 
            
                                                                                                            
                            
            
                                    
            
            
                | 196 |  |  |         ) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 197 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 198 |  |  |     def _corpus_to_vectors(self, corpus, seq, n_jobs): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 199 |  |  |         # pass corpus through all source projects | 
            
                                                                                                            
                            
            
                                    
            
            
                | 200 |  |  |         sources = dict(annif.util.parse_sources(self.params["sources"])) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 201 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 202 |  |  |         # initialize the source projects before forking, to save memory | 
            
                                                                                                            
                            
            
                                    
            
            
                | 203 |  |  |         self.info(f"Initializing source projects: {', '.join(sources.keys())}") | 
            
                                                                                                            
                            
            
                                    
            
            
                | 204 |  |  |         for project_id in sources.keys(): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 205 |  |  |             project = self.project.registry.get_project(project_id) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 206 |  |  |             project.initialize(parallel=True) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 207 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 208 |  |  |         psmap = annif.parallel.ProjectSuggestMap( | 
            
                                                                                                            
                            
            
                                    
            
            
                | 209 |  |  |             self.project.registry, | 
            
                                                                                                            
                            
            
                                    
            
            
                | 210 |  |  |             list(sources.keys()), | 
            
                                                                                                            
                            
            
                                    
            
            
                | 211 |  |  |             backend_params=None, | 
            
                                                                                                            
                            
            
                                    
            
            
                | 212 |  |  |             limit=None, | 
            
                                                                                                            
                            
            
                                    
            
            
                | 213 |  |  |             threshold=0.0, | 
            
                                                                                                            
                            
            
                                    
            
            
                | 214 |  |  |         ) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 215 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 216 |  |  |         jobs, pool_class = annif.parallel.get_pool(n_jobs) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 217 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 218 |  |  |         self.info("Processing training documents...") | 
            
                                                                                                            
                            
            
                                    
            
            
                | 219 |  |  |         with pool_class(jobs) as pool: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 220 |  |  |             for hits, subject_set in pool.imap_unordered( | 
            
                                                                                                            
                            
            
                                    
            
            
                | 221 |  |  |                 psmap.suggest, corpus.documents | 
            
                                                                                                            
                            
            
                                    
            
            
                | 222 |  |  |             ): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 223 |  |  |                 doc_scores = [] | 
            
                                                                                                            
                            
            
                                    
            
            
                | 224 |  |  |                 for project_id, p_hits in hits.items(): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 225 |  |  |                     vector = p_hits.as_vector() | 
            
                                                                                                            
                            
            
                                    
            
            
                | 226 |  |  |                     doc_scores.append( | 
            
                                                                                                            
                            
            
                                    
            
            
                | 227 |  |  |                         np.sqrt(vector) * sources[project_id] * len(sources) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 228 |  |  |                     ) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 229 |  |  |                 score_vector = np.array(doc_scores, dtype=np.float32).transpose() | 
            
                                                                                                            
                            
            
                                    
            
            
                | 230 |  |  |                 true_vector = subject_set.as_vector(len(self.project.subjects)) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 231 |  |  |                 seq.add_sample(score_vector, true_vector) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 232 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 233 |  |  |     def _open_lmdb(self, cached, lmdb_map_size): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 234 |  |  |         lmdb_path = os.path.join(self.datadir, self.LMDB_FILE) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 235 |  |  |         if not cached and os.path.exists(lmdb_path): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 236 |  |  |             shutil.rmtree(lmdb_path) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 237 |  |  |         return lmdb.open(lmdb_path, map_size=lmdb_map_size, writemap=True) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 238 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 239 |  |  |     def _fit_model(self, corpus, epochs, lmdb_map_size, n_jobs=1): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 240 |  |  |         env = self._open_lmdb(corpus == "cached", lmdb_map_size) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 241 |  |  |         if corpus != "cached": | 
            
                                                                                                            
                            
            
                                    
            
            
                | 242 |  |  |             if corpus.is_empty(): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 243 |  |  |                 raise NotSupportedException( | 
            
                                                                                                            
                            
            
                                    
            
            
                | 244 |  |  |                     "Cannot train nn_ensemble project with no documents" | 
            
                                                                                                            
                            
            
                                    
            
            
                | 245 |  |  |                 ) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 246 |  |  |             with env.begin(write=True, buffers=True) as txn: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 247 |  |  |                 seq = LMDBSequence(txn, batch_size=32) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 248 |  |  |                 self._corpus_to_vectors(corpus, seq, n_jobs) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 249 |  |  |         else: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 250 |  |  |             self.info("Reusing cached training data from previous run.") | 
            
                                                                                                            
                            
            
                                    
            
            
                | 251 |  |  |         # fit the model using a read-only view of the LMDB | 
            
                                                                                                            
                            
            
                                    
            
            
                | 252 |  |  |         self.info("Training neural network model...") | 
            
                                                                                                            
                            
            
                                    
            
            
                | 253 |  |  |         with env.begin(buffers=True) as txn: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 254 |  |  |             seq = LMDBSequence(txn, batch_size=32) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 255 |  |  |             self._model.fit(seq, verbose=True, epochs=epochs) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 256 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 257 |  |  |         annif.util.atomic_save(self._model, self.datadir, self.MODEL_FILE) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 258 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 259 |  |  |     def _learn(self, corpus, params): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 260 |  |  |         self.initialize() | 
            
                                                                                                            
                            
            
                                    
            
            
                | 261 |  |  |         self._fit_model( | 
            
                                                                                                            
                            
            
                                    
            
            
                | 262 |  |  |             corpus, int(params["learn-epochs"]), int(params["lmdb_map_size"]) | 
            
                                                                                                            
                                                                
            
                                    
            
            
                | 263 |  |  |         ) | 
            
                                                        
            
                                    
            
            
                | 264 |  |  |  |