1
|
|
|
"""TODO""" |
2
|
|
|
|
3
|
|
|
from __future__ import annotations |
4
|
|
|
|
5
|
|
|
import os |
6
|
|
|
from typing import TYPE_CHECKING, Any |
7
|
|
|
|
8
|
|
|
from openai import AzureOpenAI |
9
|
|
|
|
10
|
|
|
import annif.eval |
11
|
|
|
import annif.parallel |
12
|
|
|
import annif.util |
13
|
|
|
from annif.exception import NotSupportedException |
14
|
|
|
from annif.suggestion import SubjectSuggestion, SuggestionBatch |
15
|
|
|
|
16
|
|
|
from . import backend |
17
|
|
|
|
18
|
|
|
if TYPE_CHECKING: |
19
|
|
|
from datetime import datetime |
20
|
|
|
|
21
|
|
|
from annif.corpus.document import DocumentCorpus |
22
|
|
|
|
23
|
|
|
|
24
|
|
|
class BaseLLMBackend(backend.AnnifBackend): |
25
|
|
|
# """Base class for TODO backends""" |
26
|
|
|
|
27
|
|
|
def _get_sources_attribute(self, attr: str) -> list[bool | None]: |
28
|
|
|
params = self._get_backend_params(None) |
29
|
|
|
sources = annif.util.parse_sources(params["sources"]) |
30
|
|
|
return [ |
31
|
|
|
getattr(self.project.registry.get_project(project_id), attr) |
32
|
|
|
for project_id, _ in sources |
33
|
|
|
] |
34
|
|
|
|
35
|
|
|
def initialize(self, parallel: bool = False) -> None: |
36
|
|
|
# initialize all the source projects |
37
|
|
|
params = self._get_backend_params(None) |
38
|
|
|
for project_id, _ in annif.util.parse_sources(params["sources"]): |
39
|
|
|
project = self.project.registry.get_project(project_id) |
40
|
|
|
project.initialize(parallel) |
41
|
|
|
|
42
|
|
|
def _suggest_with_sources( |
43
|
|
|
self, texts: list[str], sources: list[tuple[str, float]] |
44
|
|
|
) -> dict[str, SuggestionBatch]: |
45
|
|
|
return { |
46
|
|
|
project_id: self.project.registry.get_project(project_id).suggest(texts) |
47
|
|
|
for project_id, _ in sources |
48
|
|
|
} |
49
|
|
|
|
50
|
|
|
def _suggest_batch( |
51
|
|
|
self, texts: list[str], params: dict[str, Any] |
52
|
|
|
) -> SuggestionBatch: |
53
|
|
|
sources = annif.util.parse_sources(params["sources"]) |
54
|
|
|
return self._suggest_with_sources(texts, sources)[sources[0][0]] |
55
|
|
|
# return self._merge_source_batches(batch_by_source, sources, params) |
56
|
|
|
|
57
|
|
|
|
58
|
|
|
class LLMBackend(BaseLLMBackend): |
59
|
|
|
# """TODO backend that combines results from multiple projects""" |
60
|
|
|
|
61
|
|
|
name = "llm" |
62
|
|
|
|
63
|
|
|
# client = AzureOpenAI( |
64
|
|
|
# azure_endpoint="", |
65
|
|
|
# api_key=os.getenv("AZURE_OPENAI_KEY"), |
66
|
|
|
# api_version="2024-02-15-preview", |
67
|
|
|
# ) |
68
|
|
|
|
69
|
|
|
prompt_base = """ |
70
|
|
|
I will give you text and some keywords to describe it. Your task is to |
71
|
|
|
score to the keywords with a value between 0.0 and 1.0, a perfect |
72
|
|
|
keyword should have score 1.0 and completely unrelated keyword score |
73
|
|
|
0.0. Output the same list of keywords and add its score separeted with |
74
|
|
|
comma, no other output or explanations. |
75
|
|
|
""" |
76
|
|
|
|
77
|
|
|
@property |
78
|
|
|
def is_trained(self) -> bool: |
79
|
|
|
sources_trained = self._get_sources_attribute("is_trained") |
80
|
|
|
return all(sources_trained) |
81
|
|
|
|
82
|
|
|
@property |
83
|
|
|
def modification_time(self) -> datetime | None: |
84
|
|
|
mtimes = self._get_sources_attribute("modification_time") |
85
|
|
|
return max(filter(None, mtimes), default=None) |
86
|
|
|
|
87
|
|
|
def _train(self, corpus: DocumentCorpus, params: dict[str, Any], jobs: int = 0): |
88
|
|
|
raise NotSupportedException("Training LLM backend is not possible.") |
89
|
|
|
|
90
|
|
|
def _suggest_batch( |
91
|
|
|
self, texts: list[str], params: dict[str, Any] |
92
|
|
|
) -> SuggestionBatch: |
93
|
|
|
sources = annif.util.parse_sources(params["sources"]) |
94
|
|
|
endpoint = params["endpoint"] |
95
|
|
|
model = params["model"] |
96
|
|
|
|
97
|
|
|
batch_results = [] |
98
|
|
|
base_suggestion_batch = self._suggest_with_sources(texts, sources)[ |
99
|
|
|
sources[0][0] |
100
|
|
|
] |
101
|
|
|
|
102
|
|
|
for text, base_suggestions in zip(texts, base_suggestion_batch): |
103
|
|
|
prompt = self.prompt_base + "\n" + "Here is the text:\n" + text + "\n" |
104
|
|
|
|
105
|
|
|
base_labels = [ |
106
|
|
|
self.project.subjects[s.subject_id].labels["en"] |
107
|
|
|
for s in base_suggestions |
108
|
|
|
] |
109
|
|
|
prompt += "And here are the keywords:\n" + "\n".join(base_labels) |
110
|
|
|
|
111
|
|
|
answer = self._call_llm(prompt, endpoint, model) |
112
|
|
|
llm_result = self._parse_llm_answer(answer) |
113
|
|
|
results = self._get_llm_suggestions( |
114
|
|
|
llm_result, base_labels, base_suggestions |
115
|
|
|
) |
116
|
|
|
batch_results.append(results) |
117
|
|
|
return SuggestionBatch.from_sequence(batch_results, self.project.subjects) |
118
|
|
|
|
119
|
|
|
def _parse_llm_answer(self, answer): |
120
|
|
|
if not answer: |
121
|
|
|
return [], [] |
122
|
|
|
labels, scores = [], [] |
123
|
|
|
lines = answer.splitlines() |
124
|
|
|
for line in lines: |
125
|
|
|
parts = line.split(",") |
126
|
|
|
if len(parts) == 2: |
127
|
|
|
labels.append(parts[0]) |
128
|
|
|
scores.append(float(parts[1])) |
129
|
|
|
else: |
130
|
|
|
print(f"Failed parsing line: {line.strip()}") |
131
|
|
|
return (labels, scores) |
132
|
|
|
|
133
|
|
|
def _get_llm_suggestions(self, llm_result, base_labels, base_suggestions): |
134
|
|
|
suggestions = [] |
135
|
|
|
for label, score in zip(*llm_result): |
136
|
|
|
for blabel, bsuggestion in zip(base_labels, base_suggestions): |
137
|
|
|
if blabel == label: |
138
|
|
|
subj_id = bsuggestion.subject_id |
139
|
|
|
suggestions.append( |
140
|
|
|
SubjectSuggestion(subject_id=subj_id, score=score) |
141
|
|
|
) |
142
|
|
|
return suggestions |
143
|
|
|
|
144
|
|
|
def _call_llm(self, prompt: str, endpoint: str, model: str): |
145
|
|
|
|
146
|
|
|
client = AzureOpenAI( |
147
|
|
|
azure_endpoint=endpoint, |
148
|
|
|
api_key=os.getenv("AZURE_OPENAI_KEY"), |
149
|
|
|
api_version="2024-02-15-preview", |
150
|
|
|
) |
151
|
|
|
|
152
|
|
|
messages = [ |
153
|
|
|
# {"role": "system", "content": "You are a helpful assistant."}, |
154
|
|
|
{"role": "user", "content": prompt}, |
155
|
|
|
] |
156
|
|
|
completion = client.chat.completions.create( |
157
|
|
|
model=model, |
158
|
|
|
messages=messages, |
159
|
|
|
temperature=0.0, |
160
|
|
|
max_tokens=1800, |
161
|
|
|
top_p=0.95, |
162
|
|
|
frequency_penalty=0, |
163
|
|
|
presence_penalty=0, |
164
|
|
|
stop=None, |
165
|
|
|
) |
166
|
|
|
return completion.choices[0].message.content |
167
|
|
|
|