| 
                    1
                 | 
                                    
                                                     | 
                
                 | 
                """Evaluation metrics for Annif"""  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    2
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    3
                 | 
                                    
                                                     | 
                
                 | 
                import collections  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    4
                 | 
                                    
                                                     | 
                
                 | 
                import statistics  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    5
                 | 
                                    
                                                     | 
                
                 | 
                import warnings  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    6
                 | 
                                    
                                                     | 
                
                 | 
                import numpy as np  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    7
                 | 
                                    
                                                     | 
                
                 | 
                from sklearn.metrics import precision_score, recall_score, f1_score  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    8
                 | 
                                    
                                                     | 
                
                 | 
                from sklearn.metrics import label_ranking_average_precision_score  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    9
                 | 
                                    
                                                     | 
                
                 | 
                from annif.exception import NotSupportedException  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    10
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    11
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    12
                 | 
                                    
                                                     | 
                
                 | 
                def filter_pred_top_k(preds, limit):  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    13
                 | 
                                    
                                                     | 
                
                 | 
                    """filter a 2D prediction vector, retaining only the top K suggestions  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    14
                 | 
                                    
                                                     | 
                
                 | 
                    for each individual prediction; the rest will be set to zeros"""  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    15
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    16
                 | 
                                    
                                                     | 
                
                 | 
                    masks = []  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    17
                 | 
                                    
                                                     | 
                
                 | 
                    for pred in preds:  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    18
                 | 
                                    
                                                     | 
                
                 | 
                        mask = np.zeros_like(pred, dtype=np.bool)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    19
                 | 
                                    
                                                     | 
                
                 | 
                        top_k = np.argsort(pred)[::-1][:limit]  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    20
                 | 
                                    
                                                     | 
                
                 | 
                        mask[top_k] = True  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    21
                 | 
                                    
                                                     | 
                
                 | 
                        masks.append(mask)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    22
                 | 
                                    
                                                     | 
                
                 | 
                    return preds * np.array(masks)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    23
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    24
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    25
                 | 
                                    
                                                     | 
                
                 | 
                def true_positives(y_true, y_pred):  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    26
                 | 
                                    
                                                     | 
                
                 | 
                    """calculate the number of true positives using bitwise operations,  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    27
                 | 
                                    
                                                     | 
                
                 | 
                    emulating the way sklearn evaluation metric functions work"""  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    28
                 | 
                                    
                                                     | 
                
                 | 
                    return (y_true & y_pred).sum()  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    29
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    30
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    31
                 | 
                                    
                                                     | 
                
                 | 
                def false_positives(y_true, y_pred):  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    32
                 | 
                                    
                                                     | 
                
                 | 
                    """calculate the number of false positives using bitwise operations,  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    33
                 | 
                                    
                                                     | 
                
                 | 
                    emulating the way sklearn evaluation metric functions work"""  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    34
                 | 
                                    
                                                     | 
                
                 | 
                    return (~y_true & y_pred).sum()  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    35
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    36
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    37
                 | 
                                    
                                                     | 
                
                 | 
                def false_negatives(y_true, y_pred):  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    38
                 | 
                                    
                                                     | 
                
                 | 
                    """calculate the number of false negatives using bitwise operations,  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    39
                 | 
                                    
                                                     | 
                
                 | 
                    emulating the way sklearn evaluation metric functions work"""  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    40
                 | 
                                    
                                                     | 
                
                 | 
                    return (y_true & ~y_pred).sum()  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    41
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    42
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    43
                 | 
                                    
                                                     | 
                
                 | 
                def precision_at_k_score(y_true, y_pred, limit):  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    44
                 | 
                                    
                                                     | 
                
                 | 
                    """calculate the precision at K, i.e. the number of relevant items  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    45
                 | 
                                    
                                                     | 
                
                 | 
                    among the top K predicted ones"""  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    46
                 | 
                                    
                                                     | 
                
                 | 
                    scores = []  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    47
                 | 
                                    
                                                     | 
                
                 | 
                    for true, pred in zip(y_true, y_pred):  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    48
                 | 
                                    
                                                     | 
                
                 | 
                        order = pred.argsort()[::-1]  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    49
                 | 
                                    
                                                     | 
                
                 | 
                        orderlimit = min(limit, np.count_nonzero(pred))  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    50
                 | 
                                    
                                                     | 
                
                 | 
                        order = order[:orderlimit]  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    51
                 | 
                                    
                                                     | 
                
                 | 
                        gain = true[order]  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    52
                 | 
                                    
                                                     | 
                
                 | 
                        if orderlimit > 0:  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    53
                 | 
                                    
                                                     | 
                
                 | 
                            scores.append(gain.sum() / orderlimit)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    54
                 | 
                                    
                                                     | 
                
                 | 
                        else:  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    55
                 | 
                                    
                                                     | 
                
                 | 
                            scores.append(0.0)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    56
                 | 
                                    
                                                     | 
                
                 | 
                    return statistics.mean(scores)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    57
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                                                                
            
                                    
            
            
                | 
                    58
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                        
                            
            
                                    
            
            
                | 
                    59
                 | 
                                    
                                                     | 
                
                 | 
                def dcg_score(y_true, y_pred, limit=None):  | 
            
            
                                                                        
                            
            
                                    
            
            
                | 
                    60
                 | 
                                    
                                                     | 
                
                 | 
                    """return the discounted cumulative gain (DCG) score for the selected  | 
            
            
                                                                        
                            
            
                                    
            
            
                | 
                    61
                 | 
                                    
                                                     | 
                
                 | 
                    labels vs. relevant labels"""  | 
            
            
                                                                        
                            
            
                                    
            
            
                | 
                    62
                 | 
                                    
                                                     | 
                
                 | 
                    order = y_pred.argsort()[::-1]  | 
            
            
                                                                        
                            
            
                                    
            
            
                | 
                    63
                 | 
                                    
                                                     | 
                
                 | 
                    n_pred = np.count_nonzero(y_pred)  | 
            
            
                                                                        
                            
            
                                    
            
            
                | 
                    64
                 | 
                                    
                                                     | 
                
                 | 
                    if limit is not None:  | 
            
            
                                                                        
                            
            
                                    
            
            
                | 
                    65
                 | 
                                    
                                                     | 
                
                 | 
                        n_pred = min(limit, n_pred)  | 
            
            
                                                                        
                            
            
                                    
            
            
                | 
                    66
                 | 
                                    
                                                     | 
                
                 | 
                    order = order[:n_pred]  | 
            
            
                                                                        
                            
            
                                    
            
            
                | 
                    67
                 | 
                                    
                                                     | 
                
                 | 
                    gain = y_true[order]  | 
            
            
                                                                        
                            
            
                                    
            
            
                | 
                    68
                 | 
                                    
                                                     | 
                
                 | 
                    discount = np.log2(np.arange(order.size) + 2)  | 
            
            
                                                                        
                            
            
                                    
            
            
                | 
                    69
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                        
                            
            
                                    
            
            
                | 
                    70
                 | 
                                    
                                                     | 
                
                 | 
                    return (gain / discount).sum()  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    71
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    72
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    73
                 | 
                                    
                                                     | 
                
                 | 
                def ndcg_score(y_true, y_pred, limit=None):  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    74
                 | 
                                    
                                                     | 
                
                 | 
                    """return the normalized discounted cumulative gain (nDCG) score for the  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    75
                 | 
                                    
                                                     | 
                
                 | 
                    selected labels vs. relevant labels"""  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    76
                 | 
                                    
                                                     | 
                
                 | 
                    scores = []  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    77
                 | 
                                    
                                                     | 
                
                 | 
                    for true, pred in zip(y_true, y_pred):  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    78
                 | 
                                    
                                                     | 
                
                 | 
                        idcg = dcg_score(true, true, limit)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    79
                 | 
                                    
                                                     | 
                
                 | 
                        dcg = dcg_score(true, pred, limit)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    80
                 | 
                                    
                                                     | 
                
                 | 
                        if idcg > 0:  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    81
                 | 
                                    
                                                     | 
                
                 | 
                            scores.append(dcg / idcg)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    82
                 | 
                                    
                                                     | 
                
                 | 
                        else:  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    83
                 | 
                                    
                                                     | 
                
                 | 
                            scores.append(1.0)  # perfect score for no relevant hits case  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    84
                 | 
                                    
                                                     | 
                
                 | 
                    return statistics.mean(scores)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    85
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    86
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    87
                 | 
                                    
                                                     | 
                
                 | 
                class EvaluationBatch:  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    88
                 | 
                                    
                                                     | 
                
                 | 
                    """A class for evaluating batches of results using all available metrics.  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    89
                 | 
                                    
                                                     | 
                
                 | 
                    The evaluate() method is called once per document in the batch.  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    90
                 | 
                                    
                                                     | 
                
                 | 
                    Final results can be queried using the results() method."""  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    91
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    92
                 | 
                                    
                                                     | 
                
                 | 
                    def __init__(self, subject_index):  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    93
                 | 
                                    
                                                     | 
                
                 | 
                        self._subject_index = subject_index  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    94
                 | 
                                    
                                                     | 
                
                 | 
                        self._samples = []  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    95
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    96
                 | 
                                    
                                                     | 
                
                 | 
                    def evaluate(self, hits, gold_subjects):  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    97
                 | 
                                    
                                                     | 
                
                 | 
                        self._samples.append((hits, gold_subjects))  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    98
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    99
                 | 
                                    
                                                     | 
                
                 | 
                    def _evaluate_samples(self, y_true, y_pred, metrics='all'):  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    100
                 | 
                                    
                                                     | 
                
                 | 
                        y_pred_binary = y_pred > 0.0  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    101
                 | 
                                    
                                                     | 
                
                 | 
                        results = collections.OrderedDict()  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    102
                 | 
                                    
                                                     | 
                
                 | 
                        with warnings.catch_warnings():  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    103
                 | 
                                    
                                                     | 
                
                 | 
                            warnings.simplefilter('ignore') | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    104
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    105
                 | 
                                    
                                                     | 
                
                 | 
                            results['Precision (doc avg)'] = precision_score(  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    106
                 | 
                                    
                                                     | 
                
                 | 
                                y_true, y_pred_binary, average='samples')  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    107
                 | 
                                    
                                                     | 
                
                 | 
                            results['Recall (doc avg)'] = recall_score(  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    108
                 | 
                                    
                                                     | 
                
                 | 
                                y_true, y_pred_binary, average='samples')  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    109
                 | 
                                    
                                                     | 
                
                 | 
                            results['F1 score (doc avg)'] = f1_score(  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    110
                 | 
                                    
                                                     | 
                
                 | 
                                y_true, y_pred_binary, average='samples')  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    111
                 | 
                                    
                                                     | 
                
                 | 
                            if metrics == 'all':  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    112
                 | 
                                    
                                                     | 
                
                 | 
                                results['Precision (subj avg)'] = precision_score(  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    113
                 | 
                                    
                                                     | 
                
                 | 
                                    y_true, y_pred_binary, average='macro')  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    114
                 | 
                                    
                                                     | 
                
                 | 
                                results['Recall (subj avg)'] = recall_score(  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    115
                 | 
                                    
                                                     | 
                
                 | 
                                    y_true, y_pred_binary, average='macro')  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    116
                 | 
                                    
                                                     | 
                
                 | 
                                results['F1 score (subj avg)'] = f1_score(  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    117
                 | 
                                    
                                                     | 
                
                 | 
                                    y_true, y_pred_binary, average='macro')  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    118
                 | 
                                    
                                                     | 
                
                 | 
                                results['Precision (weighted subj avg)'] = precision_score(  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    119
                 | 
                                    
                                                     | 
                
                 | 
                                    y_true, y_pred_binary, average='weighted')  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    120
                 | 
                                    
                                                     | 
                
                 | 
                                results['Recall (weighted subj avg)'] = recall_score(  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    121
                 | 
                                    
                                                     | 
                
                 | 
                                    y_true, y_pred_binary, average='weighted')  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    122
                 | 
                                    
                                                     | 
                
                 | 
                                results['F1 score (weighted subj avg)'] = f1_score(  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    123
                 | 
                                    
                                                     | 
                
                 | 
                                    y_true, y_pred_binary, average='weighted')  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    124
                 | 
                                    
                                                     | 
                
                 | 
                                results['Precision (microavg)'] = precision_score(  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    125
                 | 
                                    
                                                     | 
                
                 | 
                                    y_true, y_pred_binary, average='micro')  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    126
                 | 
                                    
                                                     | 
                
                 | 
                                results['Recall (microavg)'] = recall_score(  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    127
                 | 
                                    
                                                     | 
                
                 | 
                                    y_true, y_pred_binary, average='micro')  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    128
                 | 
                                    
                                                     | 
                
                 | 
                                results['F1 score (microavg)'] = f1_score(  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    129
                 | 
                                    
                                                     | 
                
                 | 
                                    y_true, y_pred_binary, average='micro')  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    130
                 | 
                                    
                                                     | 
                
                 | 
                            results['F1@5'] = f1_score(  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    131
                 | 
                                    
                                                     | 
                
                 | 
                                y_true, filter_pred_top_k(y_pred, 5) > 0.0, average='samples')  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    132
                 | 
                                    
                                                     | 
                
                 | 
                            results['NDCG'] = ndcg_score(y_true, y_pred)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    133
                 | 
                                    
                                                     | 
                
                 | 
                            results['NDCG@5'] = ndcg_score(y_true, y_pred, limit=5)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    134
                 | 
                                    
                                                     | 
                
                 | 
                            results['NDCG@10'] = ndcg_score(y_true, y_pred, limit=10)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    135
                 | 
                                    
                                                     | 
                
                 | 
                            if metrics == 'all':  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    136
                 | 
                                    
                                                     | 
                
                 | 
                                results['Precision@1'] = precision_at_k_score(  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    137
                 | 
                                    
                                                     | 
                
                 | 
                                    y_true, y_pred, limit=1)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    138
                 | 
                                    
                                                     | 
                
                 | 
                                results['Precision@3'] = precision_at_k_score(  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    139
                 | 
                                    
                                                     | 
                
                 | 
                                    y_true, y_pred, limit=3)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    140
                 | 
                                    
                                                     | 
                
                 | 
                                results['Precision@5'] = precision_at_k_score(  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    141
                 | 
                                    
                                                     | 
                
                 | 
                                    y_true, y_pred, limit=5)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    142
                 | 
                                    
                                                     | 
                
                 | 
                                results['LRAP'] = label_ranking_average_precision_score(  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    143
                 | 
                                    
                                                     | 
                
                 | 
                                    y_true, y_pred)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    144
                 | 
                                    
                                                     | 
                
                 | 
                                results['True positives'] = true_positives(  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    145
                 | 
                                    
                                                     | 
                
                 | 
                                    y_true, y_pred_binary)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    146
                 | 
                                    
                                                     | 
                
                 | 
                                results['False positives'] = false_positives(  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    147
                 | 
                                    
                                                     | 
                
                 | 
                                    y_true, y_pred_binary)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    148
                 | 
                                    
                                                     | 
                
                 | 
                                results['False negatives'] = false_negatives(  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    149
                 | 
                                    
                                                     | 
                
                 | 
                                    y_true, y_pred_binary)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    150
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    151
                 | 
                                    
                                                     | 
                
                 | 
                        return results  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    152
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    153
                 | 
                                    
                                                     | 
                
                 | 
                    def _result_per_subject_header(self, results_file):  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    154
                 | 
                                    
                                                     | 
                
                 | 
                        print('\t'.join(['URI', | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    155
                 | 
                                    
                                                     | 
                
                 | 
                                         'Label',  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    156
                 | 
                                    
                                                     | 
                
                 | 
                                         'Support',  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    157
                 | 
                                    
                                                     | 
                
                 | 
                                         'True_positives',  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    158
                 | 
                                    
                                                     | 
                
                 | 
                                         'False_positives',  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    159
                 | 
                                    
                                                     | 
                
                 | 
                                         'False_negatives',  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    160
                 | 
                                    
                                                     | 
                
                 | 
                                         'Precision',  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    161
                 | 
                                    
                                                     | 
                
                 | 
                                         'Recall',  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    162
                 | 
                                    
                                                     | 
                
                 | 
                                         'F1_score']),  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    163
                 | 
                                    
                                                     | 
                
                 | 
                              file=results_file)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    164
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    165
                 | 
                                    
                                                     | 
                
                 | 
                    def _result_per_subject_body(self, zipped_results, results_file):  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    166
                 | 
                                    
                                                     | 
                
                 | 
                        for row in zipped_results:  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    167
                 | 
                                    
                                                     | 
                
                 | 
                            print('\t'.join((str(e) for e in row)), file=results_file) | 
            
                            
                    | 
                        
                     | 
                     | 
                     | 
                    
                                                                                                    
                        
                         
                                                                                        
                                                                                     
                     | 
                
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    168
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    169
                 | 
                                    
                                                     | 
                
                 | 
                    def output_result_per_subject(self, y_true, y_pred, results_file):  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    170
                 | 
                                    
                                                     | 
                
                 | 
                        """Write results per subject (non-aggregated)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    171
                 | 
                                    
                                                     | 
                
                 | 
                        to outputfile results_file"""  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    172
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    173
                 | 
                                    
                                                     | 
                
                 | 
                        y_pred = y_pred.T > 0.0  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    174
                 | 
                                    
                                                     | 
                
                 | 
                        y_true = y_true.T > 0.0  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    175
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    176
                 | 
                                    
                                                     | 
                
                 | 
                        true_pos = (y_true & y_pred)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    177
                 | 
                                    
                                                     | 
                
                 | 
                        false_pos = (~y_true & y_pred)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    178
                 | 
                                    
                                                     | 
                
                 | 
                        false_neg = (y_true & ~y_pred)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    179
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    180
                 | 
                                    
                                                     | 
                
                 | 
                        r = len(y_true)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    181
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    182
                 | 
                                    
                                                     | 
                
                 | 
                        zipped = zip(self._subject_index._uris,               # URI  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    183
                 | 
                                    
                                                     | 
                
                 | 
                                     self._subject_index._labels,             # Label  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    184
                 | 
                                    
                                                     | 
                
                 | 
                                     np.sum((true_pos + false_neg), axis=1),  # Support  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    185
                 | 
                                    
                                                     | 
                
                 | 
                                     np.sum(true_pos, axis=1),                # True_positives  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    186
                 | 
                                    
                                                     | 
                
                 | 
                                     np.sum(false_pos, axis=1),               # False_positives  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    187
                 | 
                                    
                                                     | 
                
                 | 
                                     np.sum(false_neg, axis=1),               # False_negatives  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    188
                 | 
                                    
                                                     | 
                
                 | 
                                     [precision_score(y_true[i], y_pred[i], zero_division=0)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    189
                 | 
                                    
                                                     | 
                
                 | 
                                      for i in range(r)],                     # Precision  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    190
                 | 
                                    
                                                     | 
                
                 | 
                                     [recall_score(y_true[i], y_pred[i], zero_division=0)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    191
                 | 
                                    
                                                     | 
                
                 | 
                                      for i in range(r)],                     # Recall  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    192
                 | 
                                    
                                                     | 
                
                 | 
                                     [f1_score(y_true[i], y_pred[i], zero_division=0)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    193
                 | 
                                    
                                                     | 
                
                 | 
                                      for i in range(r)])                     # F1  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    194
                 | 
                                    
                                                     | 
                
                 | 
                        self._result_per_subject_header(results_file)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    195
                 | 
                                    
                                                     | 
                
                 | 
                        self._result_per_subject_body(zipped, results_file)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    196
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    197
                 | 
                                    
                                                     | 
                
                 | 
                    def results(self, metrics='all', results_file=None):  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    198
                 | 
                                    
                                                     | 
                
                 | 
                        """evaluate a set of selected subjects against a gold standard using  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    199
                 | 
                                    
                                                     | 
                
                 | 
                        different metrics. The set of metrics can be either 'all' or 'simple'.  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    200
                 | 
                                    
                                                     | 
                
                 | 
                        If results_file (file object) given, write results per subject to it"""  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    201
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    202
                 | 
                                    
                                                     | 
                
                 | 
                        if not self._samples:  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    203
                 | 
                                    
                                                     | 
                
                 | 
                            raise NotSupportedException("cannot evaluate empty corpus") | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    204
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    205
                 | 
                                    
                                                     | 
                
                 | 
                        y_true = np.array([gold_subjects.as_vector(self._subject_index)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    206
                 | 
                                    
                                                     | 
                
                 | 
                                           for hits, gold_subjects in self._samples])  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    207
                 | 
                                    
                                                     | 
                
                 | 
                        y_pred = np.array([hits.vector  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    208
                 | 
                                    
                                                     | 
                
                 | 
                                           for hits, gold_subjects in self._samples],  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    209
                 | 
                                    
                                                     | 
                
                 | 
                                          dtype=np.float32)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    210
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    211
                 | 
                                    
                                                     | 
                
                 | 
                        results = self._evaluate_samples(  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    212
                 | 
                                    
                                                     | 
                
                 | 
                            y_true, y_pred, metrics)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    213
                 | 
                                    
                                                     | 
                
                 | 
                        results['Documents evaluated'] = y_true.shape[0]  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    214
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    215
                 | 
                                    
                                                     | 
                
                 | 
                        if results_file:  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    216
                 | 
                                    
                                                     | 
                
                 | 
                            self.output_result_per_subject(y_true, y_pred, results_file)  | 
            
            
                                                                                                            
                                                                
            
                                    
            
            
                | 
                    217
                 | 
                                    
                                                     | 
                
                 | 
                        return results  | 
            
            
                                                        
            
                                    
            
            
                | 
                    218
                 | 
                                    
                                                     | 
                
                 | 
                 |