1
|
|
|
"""Representing suggested subjects.""" |
2
|
|
|
|
3
|
|
|
import abc |
4
|
|
|
import collections |
5
|
|
|
import itertools |
6
|
|
|
|
7
|
|
|
import numpy as np |
8
|
|
|
from scipy.sparse import dok_array |
9
|
|
|
|
10
|
|
|
SubjectSuggestion = collections.namedtuple("SubjectSuggestion", "subject_id score") |
11
|
|
|
WeightedSuggestionsBatch = collections.namedtuple( |
12
|
|
|
"WeightedSuggestionsBatch", "hit_sets weight subjects" |
13
|
|
|
) |
14
|
|
|
|
15
|
|
|
|
16
|
|
|
def filter_suggestion(preds, limit=None, threshold=0.0): |
17
|
|
|
"""filter a 2D sparse suggestion array (csr_array), retaining only the |
18
|
|
|
top K suggestions with a score above or equal to the threshold for each |
19
|
|
|
individual prediction; the rest will be left as zeros""" |
20
|
|
|
|
21
|
|
|
filtered = dok_array(preds.shape, dtype=np.float32) |
22
|
|
|
for row in range(preds.shape[0]): |
23
|
|
|
arow = preds.getrow(row) |
24
|
|
|
top_k = arow.data.argsort()[::-1] |
25
|
|
|
if limit is not None: |
26
|
|
|
top_k = top_k[:limit] |
27
|
|
|
for idx in top_k: |
28
|
|
|
val = arow.data[idx] |
29
|
|
|
if val < threshold: |
30
|
|
|
break |
31
|
|
|
filtered[row, arow.indices[idx]] = val |
32
|
|
|
return filtered.tocsr() |
33
|
|
|
|
34
|
|
|
|
35
|
|
|
class SuggestionResult(metaclass=abc.ABCMeta): |
36
|
|
|
"""Abstract base class for a set of hits returned by an analysis |
37
|
|
|
operation.""" |
38
|
|
|
|
39
|
|
|
@abc.abstractmethod |
40
|
|
|
def __iter__(self): |
41
|
|
|
"""Return the hits as an iterator that returns SubjectSuggestion objects, |
42
|
|
|
highest scores first.""" |
43
|
|
|
pass # pragma: no cover |
44
|
|
|
|
45
|
|
|
@abc.abstractmethod |
46
|
|
|
def as_vector(self, size, destination=None): |
47
|
|
|
"""Return the hits as a one-dimensional score vector of given size. |
48
|
|
|
If destination array is given (not None) it will be used, otherwise a |
49
|
|
|
new array will be created.""" |
50
|
|
|
pass # pragma: no cover |
51
|
|
|
|
52
|
|
|
@abc.abstractmethod |
53
|
|
|
def filter(self, subject_index, limit=None, threshold=0.0): |
54
|
|
|
"""Return a subset of the hits, filtered by the given limit and |
55
|
|
|
score threshold, as another SuggestionResult object.""" |
56
|
|
|
pass # pragma: no cover |
57
|
|
|
|
58
|
|
|
@abc.abstractmethod |
59
|
|
|
def __len__(self): |
60
|
|
|
"""Return the number of hits with non-zero scores.""" |
61
|
|
|
pass # pragma: no cover |
62
|
|
|
|
63
|
|
|
|
64
|
|
|
class VectorSuggestionResult(SuggestionResult): |
65
|
|
|
"""SuggestionResult implementation based primarily on NumPy vectors.""" |
66
|
|
|
|
67
|
|
|
def __init__(self, vector): |
68
|
|
|
vector_f32 = vector.astype(np.float32) |
69
|
|
|
# limit scores to the range 0.0 .. 1.0 |
70
|
|
|
self._vector = np.minimum(np.maximum(vector_f32, 0.0), 1.0) |
71
|
|
|
self._subject_order = None |
72
|
|
|
self._lsr = None |
73
|
|
|
|
74
|
|
|
def _vector_to_list_suggestion(self): |
75
|
|
|
hits = [] |
76
|
|
|
for subject_id in self.subject_order: |
77
|
|
|
score = self._vector[subject_id] |
78
|
|
|
if score <= 0.0: |
79
|
|
|
break # we can skip the remaining ones |
80
|
|
|
hits.append(SubjectSuggestion(subject_id=subject_id, score=float(score))) |
81
|
|
|
return ListSuggestionResult(hits) |
82
|
|
|
|
83
|
|
|
@property |
84
|
|
|
def subject_order(self): |
85
|
|
|
if self._subject_order is None: |
86
|
|
|
self._subject_order = np.argsort(self._vector)[::-1] |
87
|
|
|
return self._subject_order |
88
|
|
|
|
89
|
|
|
def __iter__(self): |
90
|
|
|
if self._lsr is None: |
91
|
|
|
self._lsr = self._vector_to_list_suggestion() |
92
|
|
|
return iter(self._lsr) |
93
|
|
|
|
94
|
|
|
def as_vector(self, size, destination=None): |
95
|
|
|
if destination is not None: |
96
|
|
|
np.copyto(destination, self._vector) |
97
|
|
|
return destination |
98
|
|
|
return self._vector |
99
|
|
|
|
100
|
|
|
def filter(self, subject_index, limit=None, threshold=0.0): |
101
|
|
|
mask = self._vector > threshold |
102
|
|
|
deprecated_ids = subject_index.deprecated_ids() |
103
|
|
|
if limit is not None: |
104
|
|
|
limit_mask = np.zeros_like(self._vector, dtype=bool) |
105
|
|
|
deprecated_set = set(deprecated_ids) |
106
|
|
|
top_k_subjects = itertools.islice( |
107
|
|
|
(subj for subj in self.subject_order if subj not in deprecated_set), |
108
|
|
|
limit, |
109
|
|
|
) |
110
|
|
|
limit_mask[list(top_k_subjects)] = True |
111
|
|
|
mask = mask & limit_mask |
112
|
|
|
else: |
113
|
|
|
deprecated_mask = np.ones_like(self._vector, dtype=bool) |
114
|
|
|
deprecated_mask[deprecated_ids] = False |
115
|
|
|
mask = mask & deprecated_mask |
116
|
|
|
vsr = VectorSuggestionResult(self._vector * mask) |
117
|
|
|
return ListSuggestionResult(vsr) |
118
|
|
|
|
119
|
|
|
def __len__(self): |
120
|
|
|
return (self._vector > 0.0).sum() |
121
|
|
|
|
122
|
|
|
|
123
|
|
|
class ListSuggestionResult(SuggestionResult): |
124
|
|
|
"""SuggestionResult implementation based primarily on lists of hits.""" |
125
|
|
|
|
126
|
|
|
def __init__(self, hits): |
127
|
|
|
self._list = [self._enforce_score_range(hit) for hit in hits if hit.score > 0.0] |
128
|
|
|
self._vector = None |
129
|
|
|
|
130
|
|
|
@staticmethod |
131
|
|
|
def _enforce_score_range(hit): |
132
|
|
|
if hit.score > 1.0: |
133
|
|
|
return hit._replace(score=1.0) |
134
|
|
|
return hit |
135
|
|
|
|
136
|
|
|
def _list_to_vector(self, size, destination): |
137
|
|
|
if destination is None: |
138
|
|
|
destination = np.zeros(size, dtype=np.float32) |
139
|
|
|
|
140
|
|
|
for hit in self._list: |
141
|
|
|
if hit.subject_id is not None: |
142
|
|
|
destination[hit.subject_id] = hit.score |
143
|
|
|
return destination |
144
|
|
|
|
145
|
|
|
def __iter__(self): |
146
|
|
|
return iter(self._list) |
147
|
|
|
|
148
|
|
|
def as_vector(self, size, destination=None): |
149
|
|
|
if self._vector is None: |
150
|
|
|
self._vector = self._list_to_vector(size, destination) |
151
|
|
|
return self._vector |
152
|
|
|
|
153
|
|
|
def filter(self, subject_index, limit=None, threshold=0.0): |
154
|
|
|
hits = sorted(self._list, key=lambda hit: hit.score, reverse=True) |
155
|
|
|
filtered_hits = [ |
156
|
|
|
hit |
157
|
|
|
for hit in hits |
158
|
|
|
if hit.score >= threshold and hit.score > 0.0 and hit.subject_id is not None |
159
|
|
|
] |
160
|
|
|
if limit is not None: |
161
|
|
|
filtered_hits = filtered_hits[:limit] |
162
|
|
|
return ListSuggestionResult(filtered_hits) |
163
|
|
|
|
164
|
|
|
def __len__(self): |
165
|
|
|
return len(self._list) |
166
|
|
|
|
167
|
|
|
|
168
|
|
|
class SparseSuggestionResult(SuggestionResult): |
169
|
|
|
"""SuggestionResult implementation backed by a single row of a sparse array.""" |
170
|
|
|
|
171
|
|
|
def __init__(self, array, idx): |
172
|
|
|
self._array = array |
173
|
|
|
self._idx = idx |
174
|
|
|
|
175
|
|
|
def __iter__(self): |
176
|
|
|
_, cols = self._array[[self._idx], :].nonzero() |
177
|
|
|
suggestions = [ |
178
|
|
|
SubjectSuggestion(subject_id=col, score=float(self._array[self._idx, col])) |
179
|
|
|
for col in cols |
180
|
|
|
] |
181
|
|
|
return iter( |
182
|
|
|
sorted(suggestions, key=lambda suggestion: suggestion.score, reverse=True) |
183
|
|
|
) |
184
|
|
|
|
185
|
|
|
def as_vector(self, size, destination=None): |
186
|
|
|
if destination is not None: |
187
|
|
|
print("as_vector called with destination not None") |
188
|
|
|
return None |
189
|
|
|
return self._array[[self._idx], :].toarray()[0] |
190
|
|
|
|
191
|
|
|
def filter(self, subject_index, limit=None, threshold=0.0): |
192
|
|
|
lsr = ListSuggestionResult(self) |
193
|
|
|
return lsr.filter(subject_index, limit, threshold) |
194
|
|
|
|
195
|
|
|
def __len__(self): |
196
|
|
|
_, cols = self._array[[self._idx], :].nonzero() |
197
|
|
|
return len(cols) |
198
|
|
|
|
199
|
|
|
|
200
|
|
|
class SuggestionBatch: |
201
|
|
|
"""Subject suggestions for a batch of documents.""" |
202
|
|
|
|
203
|
|
|
def __init__(self, array): |
204
|
|
|
"""Create a new SuggestionBatch from a csr_array""" |
205
|
|
|
self.array = array |
206
|
|
|
|
207
|
|
|
@classmethod |
208
|
|
|
def from_sequence(cls, suggestion_results, vocab_size): |
209
|
|
|
"""Create a new SuggestionBatch from a sequence of SuggestionResult objects.""" |
210
|
|
|
|
211
|
|
|
# create a dok_array for fast construction |
212
|
|
|
ar = dok_array((len(suggestion_results), vocab_size), dtype=np.float32) |
213
|
|
|
for idx, result in enumerate(suggestion_results): |
214
|
|
|
for suggestion in result: |
215
|
|
|
ar[idx, suggestion.subject_id] = suggestion.score |
216
|
|
|
return cls(ar.tocsr()) |
217
|
|
|
|
218
|
|
|
def filter(self, limit=None, threshold=0.0): |
219
|
|
|
"""Return a subset of the hits, filtered by the given limit and |
220
|
|
|
score threshold, as another SuggestionBatch object.""" |
221
|
|
|
|
222
|
|
|
return SuggestionBatch(filter_suggestion(self.array, limit, threshold)) |
223
|
|
|
|
224
|
|
|
def __getitem__(self, idx): |
225
|
|
|
if idx < 0 or idx >= len(self): |
226
|
|
|
raise IndexError |
227
|
|
|
return SparseSuggestionResult(self.array, idx) |
228
|
|
|
|
229
|
|
|
def __len__(self): |
230
|
|
|
return self.array.shape[0] |
231
|
|
|
|
232
|
|
|
|
233
|
|
|
class SuggestionResults: |
234
|
|
|
"""Subject suggestions for a potentially very large number of documents.""" |
235
|
|
|
|
236
|
|
|
def __init__(self, batches): |
237
|
|
|
"""Initialize a new SuggestionResults from an iterable that provides |
238
|
|
|
SuggestionBatch objects.""" |
239
|
|
|
|
240
|
|
|
self.batches = batches |
241
|
|
|
|
242
|
|
|
def filter(self, limit=None, threshold=0.0): |
243
|
|
|
"""Return a view of these suggestions, filtered by the given limit |
244
|
|
|
and/or threshold, as another SuggestionResults object.""" |
245
|
|
|
|
246
|
|
|
return SuggestionResults( |
247
|
|
|
(batch.filter(limit, threshold) for batch in self.batches) |
248
|
|
|
) |
249
|
|
|
|
250
|
|
|
def __iter__(self): |
251
|
|
|
return iter(itertools.chain.from_iterable(self.batches)) |
252
|
|
|
|