1
|
|
|
"""TODO""" |
2
|
|
|
|
3
|
|
|
from __future__ import annotations |
4
|
|
|
|
5
|
|
|
import os |
6
|
|
|
from typing import TYPE_CHECKING, Any |
7
|
|
|
|
8
|
|
|
import numpy as np |
9
|
|
|
import tiktoken |
10
|
|
|
from openai import AzureOpenAI, BadRequestError |
11
|
|
|
|
12
|
|
|
import annif.eval |
13
|
|
|
import annif.parallel |
14
|
|
|
import annif.util |
15
|
|
|
from annif.exception import NotSupportedException |
16
|
|
|
from annif.suggestion import SubjectSuggestion, SuggestionBatch |
17
|
|
|
|
18
|
|
|
from . import backend |
19
|
|
|
|
20
|
|
|
# from openai import AsyncAzureOpenAI |
21
|
|
|
|
22
|
|
|
|
23
|
|
|
if TYPE_CHECKING: |
24
|
|
|
from datetime import datetime |
25
|
|
|
|
26
|
|
|
from annif.corpus.document import DocumentCorpus |
27
|
|
|
|
28
|
|
|
|
29
|
|
|
class BaseLLMBackend(backend.AnnifBackend): |
30
|
|
|
# """Base class for TODO backends""" |
31
|
|
|
|
32
|
|
|
def _get_sources_attribute(self, attr: str) -> list[bool | None]: |
33
|
|
|
params = self._get_backend_params(None) |
34
|
|
|
sources = annif.util.parse_sources(params["sources"]) |
35
|
|
|
return [ |
36
|
|
|
getattr(self.project.registry.get_project(project_id), attr) |
37
|
|
|
for project_id, _ in sources |
38
|
|
|
] |
39
|
|
|
|
40
|
|
|
def initialize(self, parallel: bool = False) -> None: |
41
|
|
|
# initialize all the source projects |
42
|
|
|
params = self._get_backend_params(None) |
43
|
|
|
for project_id, _ in annif.util.parse_sources(params["sources"]): |
44
|
|
|
project = self.project.registry.get_project(project_id) |
45
|
|
|
project.initialize(parallel) |
46
|
|
|
|
47
|
|
|
# self.client = AsyncAzureOpenAI( |
48
|
|
|
self.client = AzureOpenAI( |
49
|
|
|
azure_endpoint=params["endpoint"], |
50
|
|
|
api_key=os.getenv("AZURE_OPENAI_KEY"), |
51
|
|
|
api_version="2024-02-15-preview", |
52
|
|
|
) |
53
|
|
|
|
54
|
|
|
def _suggest_with_sources( |
55
|
|
|
self, texts: list[str], sources: list[tuple[str, float]] |
56
|
|
|
) -> dict[str, SuggestionBatch]: |
57
|
|
|
return { |
58
|
|
|
project_id: self.project.registry.get_project(project_id).suggest(texts) |
59
|
|
|
for project_id, _ in sources |
60
|
|
|
} |
61
|
|
|
|
62
|
|
|
|
63
|
|
|
class LLMBackend(BaseLLMBackend): |
64
|
|
|
# """TODO backend that combines results from multiple projects""" |
65
|
|
|
|
66
|
|
|
name = "llm" |
67
|
|
|
|
68
|
|
|
system_prompt = """ |
69
|
|
|
You will be given text and a list of keywords to describe it. Your task is to |
70
|
|
|
decide whether a keyword is suitable for the text and describes it well: |
71
|
|
|
give output as a binary value; 1 for good keywords and 0 for keywords that do |
72
|
|
|
not describe the text. You must output JSON with keywords as field names and |
73
|
|
|
the binary scores as field values. |
74
|
|
|
There must be the same number of items in the JSON as there are in the |
75
|
|
|
intput keyword list, so give either 0 or 1 to every input keyword. |
76
|
|
|
""" |
77
|
|
|
|
78
|
|
|
@property |
79
|
|
|
def is_trained(self) -> bool: |
80
|
|
|
sources_trained = self._get_sources_attribute("is_trained") |
81
|
|
|
return all(sources_trained) |
82
|
|
|
|
83
|
|
|
@property |
84
|
|
|
def modification_time(self) -> datetime | None: |
85
|
|
|
mtimes = self._get_sources_attribute("modification_time") |
86
|
|
|
return max(filter(None, mtimes), default=None) |
87
|
|
|
|
88
|
|
|
def _train(self, corpus: DocumentCorpus, params: dict[str, Any], jobs: int = 0): |
89
|
|
|
raise NotSupportedException("Training LLM backend is not possible.") |
90
|
|
|
|
91
|
|
|
def _suggest_batch( |
92
|
|
|
self, texts: list[str], params: dict[str, Any] |
93
|
|
|
) -> SuggestionBatch: |
94
|
|
|
sources = annif.util.parse_sources(params["sources"]) |
95
|
|
|
model = params["model"] |
96
|
|
|
llm_scores_weight = float(params["llm_scores_weight"]) |
97
|
|
|
# llm_probs_weight = float(params["llm_probs_weight"]) |
98
|
|
|
encoding = tiktoken.encoding_for_model(model.rsplit("-", 1)[0]) |
99
|
|
|
|
100
|
|
|
batch_results = [] |
101
|
|
|
base_suggestion_batch = self._suggest_with_sources(texts, sources)[ |
102
|
|
|
sources[0][0] |
103
|
|
|
] |
104
|
|
|
|
105
|
|
|
for text, base_suggestions in zip(texts, base_suggestion_batch): |
106
|
|
|
text = self._truncate_text(text, encoding) |
107
|
|
|
prompt = "Here is the text:\n" + text + "\n" |
108
|
|
|
|
109
|
|
|
base_labels = [ |
110
|
|
|
self.project.subjects[s.subject_id].labels["en"] |
111
|
|
|
for s in base_suggestions |
112
|
|
|
] |
113
|
|
|
prompt += "And here are the keywords:\n" + "\n".join(base_labels) |
114
|
|
|
llm_result = self._call_llm(prompt, model) |
115
|
|
|
print(llm_result) |
116
|
|
|
# try: |
117
|
|
|
# llm_result = json.loads(llm_labels) |
118
|
|
|
# except (TypeError, json.decoder.JSONDecodeError) as err: |
119
|
|
|
# print(err) |
120
|
|
|
# llm_result = dict() |
121
|
|
|
results = self._map_llm_suggestions( |
122
|
|
|
llm_result, |
123
|
|
|
base_labels, |
124
|
|
|
base_suggestions, |
125
|
|
|
llm_scores_weight, |
126
|
|
|
) |
127
|
|
|
batch_results.append(results) |
128
|
|
|
return SuggestionBatch.from_sequence(batch_results, self.project.subjects) |
129
|
|
|
|
130
|
|
|
def _truncate_text(self, text, encoding): |
131
|
|
|
"""truncate text so it contains at most MAX_PROMPT_TOKENS according to the |
132
|
|
|
OpenAI tokenizer""" |
133
|
|
|
|
134
|
|
|
MAX_PROMPT_TOKENS = 14000 |
135
|
|
|
tokens = encoding.encode(text) |
136
|
|
|
return encoding.decode(tokens[:MAX_PROMPT_TOKENS]) |
137
|
|
|
|
138
|
|
|
def _map_llm_suggestions( |
139
|
|
|
self, |
140
|
|
|
llm_result, |
141
|
|
|
base_labels, |
142
|
|
|
base_suggestions, |
143
|
|
|
llm_scores_weight, |
144
|
|
|
): |
145
|
|
|
suggestions = [] |
146
|
|
|
for blabel, bsuggestion in zip(base_labels, base_suggestions): |
147
|
|
|
try: |
148
|
|
|
score = llm_result[blabel] |
149
|
|
|
except KeyError: |
150
|
|
|
print(f"Base label {blabel} not found in LLM labels") |
151
|
|
|
score = bsuggestion.score # use only base suggestion score |
152
|
|
|
subj_id = bsuggestion.subject_id |
153
|
|
|
|
154
|
|
|
base_scores_weight = 1.0 - llm_scores_weight |
155
|
|
|
mean_score = ( |
156
|
|
|
base_scores_weight * bsuggestion.score + llm_scores_weight * score |
157
|
|
|
) / ( |
158
|
|
|
base_scores_weight + llm_scores_weight |
159
|
|
|
) # weighted mean of LLM and base scores! |
160
|
|
|
suggestions.append(SubjectSuggestion(subject_id=subj_id, score=mean_score)) |
161
|
|
|
return suggestions |
162
|
|
|
|
163
|
|
|
def _call_llm(self, prompt: str, model: str): |
164
|
|
|
messages = [ |
165
|
|
|
{"role": "system", "content": self.system_prompt}, |
166
|
|
|
{"role": "user", "content": prompt}, |
167
|
|
|
] |
168
|
|
|
try: |
169
|
|
|
completion = self.client.chat.completions.create( |
170
|
|
|
model=model, |
171
|
|
|
messages=messages, |
172
|
|
|
temperature=0.0, |
173
|
|
|
seed=0, |
174
|
|
|
max_tokens=1800, |
175
|
|
|
top_p=0.95, |
176
|
|
|
frequency_penalty=0, |
177
|
|
|
presence_penalty=0, |
178
|
|
|
stop=None, |
179
|
|
|
response_format={"type": "json_object"}, |
180
|
|
|
logprobs=True, |
181
|
|
|
# top_logprobs=2, |
182
|
|
|
) |
183
|
|
|
logprobs_completion = completion.choices[0].logprobs.content |
184
|
|
|
return self._get_results(logprobs_completion) |
185
|
|
|
except BadRequestError as err: # openai.RateLimitError |
186
|
|
|
print(err) |
187
|
|
|
return dict() |
188
|
|
|
|
189
|
|
|
def _get_results(self, logprobs_completion): |
190
|
|
|
# labels, probs = [], [] |
191
|
|
|
results = dict() |
192
|
|
|
line = "" |
193
|
|
|
for token in logprobs_completion: |
194
|
|
|
# print("Token:", token.token) |
195
|
|
|
# print("Linear prob:", np.round(np.exp(token.logprob) * 100, 2), "%") |
196
|
|
|
# prev_linear_prob = np.exp(token.logprob) |
197
|
|
|
prev_token = token |
198
|
|
|
|
199
|
|
|
line += token.token |
200
|
|
|
if "\n" in token.token: |
201
|
|
|
print("Line is: " + line) |
202
|
|
|
label, boolean_score = self._parse_line(line) |
203
|
|
|
if not label == "<failed>": |
204
|
|
|
# results[label] = prev_linear_prob |
205
|
|
|
results[label] = self._get_score(prev_token) |
206
|
|
|
line = "" |
207
|
|
|
return results |
208
|
|
|
|
209
|
|
|
def _parse_line(self, line): |
210
|
|
|
try: |
211
|
|
|
label = line.split('"')[1] |
212
|
|
|
boolean_score = line.split(":")[1].strip().replace(",", "") |
213
|
|
|
except IndexError: |
214
|
|
|
print(f"Failed parsing line: '{line}'") |
215
|
|
|
return "<failed>" |
216
|
|
|
return label, boolean_score |
217
|
|
|
|
218
|
|
|
def _get_score(self, token): |
219
|
|
|
linear_prob = np.exp(token.logprob) |
220
|
|
|
if token.token == "1": |
221
|
|
|
return linear_prob |
222
|
|
|
elif token.token == "0": |
223
|
|
|
return 1.0 - linear_prob |
224
|
|
|
else: |
225
|
|
|
print(token) |
226
|
|
|
return None |
227
|
|
|
|