Total Complexity | 41 |
Total Lines | 195 |
Duplicated Lines | 82.05 % |
Changes | 0 |
Duplicate code is one of the most pungent code smells. A rule that is often used is to re-structure code once it is duplicated in three or more places.
Common duplication problems, and corresponding solutions are:
Complex classes like annif.suggestion often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.
Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.
1 | """Representing suggested subjects.""" |
||
2 | |||
3 | import abc |
||
4 | import collections |
||
5 | import itertools |
||
6 | import numpy as np |
||
7 | |||
8 | |||
9 | SubjectSuggestion = collections.namedtuple( |
||
10 | 'SubjectSuggestion', 'subject_id score') |
||
11 | WeightedSuggestion = collections.namedtuple( |
||
12 | 'WeightedSuggestion', 'hits weight subjects') |
||
13 | |||
14 | |||
15 | class SuggestionFilter: |
||
16 | """A reusable filter for filtering SubjectSuggestion objects.""" |
||
17 | |||
18 | def __init__(self, subject_index, limit=None, threshold=0.0): |
||
19 | self._subject_index = subject_index |
||
20 | self._limit = limit |
||
21 | self._threshold = threshold |
||
22 | |||
23 | def __call__(self, orighits): |
||
24 | return LazySuggestionResult( |
||
25 | lambda: orighits.filter(self._subject_index, |
||
26 | self._limit, |
||
27 | self._threshold)) |
||
28 | |||
29 | |||
30 | View Code Duplication | class SuggestionResult(metaclass=abc.ABCMeta): |
|
|
|||
31 | """Abstract base class for a set of hits returned by an analysis |
||
32 | operation.""" |
||
33 | |||
34 | @abc.abstractmethod |
||
35 | def as_list(self): |
||
36 | """Return the hits as an ordered sequence of SubjectSuggestion objects, |
||
37 | highest scores first.""" |
||
38 | pass # pragma: no cover |
||
39 | |||
40 | @abc.abstractmethod |
||
41 | def as_vector(self, size, destination=None): |
||
42 | """Return the hits as a one-dimensional score vector of given size. |
||
43 | If destination array is given (not None) it will be used, otherwise a |
||
44 | new array will be created.""" |
||
45 | pass # pragma: no cover |
||
46 | |||
47 | @abc.abstractmethod |
||
48 | def filter(self, subject_index, limit=None, threshold=0.0): |
||
49 | """Return a subset of the hits, filtered by the given limit and |
||
50 | score threshold, as another SuggestionResult object.""" |
||
51 | pass # pragma: no cover |
||
52 | |||
53 | @abc.abstractmethod |
||
54 | def __len__(self): |
||
55 | """Return the number of hits with non-zero scores.""" |
||
56 | pass # pragma: no cover |
||
57 | |||
58 | |||
59 | View Code Duplication | class LazySuggestionResult(SuggestionResult): |
|
60 | """SuggestionResult implementation that wraps another SuggestionResult which |
||
61 | is initialized lazily only when it is actually accessed. Method calls |
||
62 | will be proxied to the wrapped SuggestionResult.""" |
||
63 | |||
64 | def __init__(self, construct): |
||
65 | """Create the proxy object. The given construct function will be |
||
66 | called to create the actual SuggestionResult when it is needed.""" |
||
67 | self._construct = construct |
||
68 | self._object = None |
||
69 | |||
70 | def _initialize(self): |
||
71 | if self._object is None: |
||
72 | self._object = self._construct() |
||
73 | |||
74 | def as_list(self): |
||
75 | self._initialize() |
||
76 | return self._object.as_list() |
||
77 | |||
78 | def as_vector(self, size, destination=None): |
||
79 | self._initialize() |
||
80 | return self._object.as_vector(size, destination) |
||
81 | |||
82 | def filter(self, subject_index, limit=None, threshold=0.0): |
||
83 | self._initialize() |
||
84 | return self._object.filter(subject_index, limit, threshold) |
||
85 | |||
86 | def __len__(self): |
||
87 | self._initialize() |
||
88 | return len(self._object) |
||
89 | |||
90 | |||
91 | View Code Duplication | class VectorSuggestionResult(SuggestionResult): |
|
92 | """SuggestionResult implementation based primarily on NumPy vectors.""" |
||
93 | |||
94 | def __init__(self, vector): |
||
95 | vector_f32 = vector.astype(np.float32) |
||
96 | # limit scores to the range 0.0 .. 1.0 |
||
97 | self._vector = np.minimum(np.maximum(vector_f32, 0.0), 1.0) |
||
98 | self._subject_order = None |
||
99 | self._lsr = None |
||
100 | |||
101 | def _vector_to_list_suggestion(self): |
||
102 | hits = [] |
||
103 | for subject_id in self.subject_order: |
||
104 | score = self._vector[subject_id] |
||
105 | if score <= 0.0: |
||
106 | break # we can skip the remaining ones |
||
107 | hits.append( |
||
108 | SubjectSuggestion( |
||
109 | subject_id=subject_id, |
||
110 | score=float(score))) |
||
111 | return ListSuggestionResult(hits) |
||
112 | |||
113 | @property |
||
114 | def subject_order(self): |
||
115 | if self._subject_order is None: |
||
116 | self._subject_order = np.argsort(self._vector)[::-1] |
||
117 | return self._subject_order |
||
118 | |||
119 | def as_list(self): |
||
120 | if self._lsr is None: |
||
121 | self._lsr = self._vector_to_list_suggestion() |
||
122 | return self._lsr.as_list() |
||
123 | |||
124 | def as_vector(self, size, destination=None): |
||
125 | if destination is not None: |
||
126 | np.copyto(destination, self._vector) |
||
127 | return destination |
||
128 | return self._vector |
||
129 | |||
130 | def filter(self, subject_index, limit=None, threshold=0.0): |
||
131 | mask = (self._vector > threshold) |
||
132 | deprecated_ids = subject_index.deprecated_ids() |
||
133 | if limit is not None: |
||
134 | limit_mask = np.zeros_like(self._vector, dtype=bool) |
||
135 | deprecated_set = set(deprecated_ids) |
||
136 | top_k_subjects = itertools.islice( |
||
137 | (subj for subj in self.subject_order |
||
138 | if subj not in deprecated_set), limit) |
||
139 | limit_mask[list(top_k_subjects)] = True |
||
140 | mask = mask & limit_mask |
||
141 | else: |
||
142 | deprecated_mask = np.ones_like(self._vector, dtype=bool) |
||
143 | deprecated_mask[deprecated_ids] = False |
||
144 | mask = mask & deprecated_mask |
||
145 | vsr = VectorSuggestionResult(self._vector * mask) |
||
146 | return ListSuggestionResult(vsr.as_list()) |
||
147 | |||
148 | def __len__(self): |
||
149 | return (self._vector > 0.0).sum() |
||
150 | |||
151 | |||
152 | View Code Duplication | class ListSuggestionResult(SuggestionResult): |
|
153 | """SuggestionResult implementation based primarily on lists of hits.""" |
||
154 | |||
155 | def __init__(self, hits): |
||
156 | self._list = [self._enforce_score_range(hit) |
||
157 | for hit in hits |
||
158 | if hit.score > 0.0] |
||
159 | self._vector = None |
||
160 | |||
161 | @staticmethod |
||
162 | def _enforce_score_range(hit): |
||
163 | if hit.score > 1.0: |
||
164 | return hit._replace(score=1.0) |
||
165 | return hit |
||
166 | |||
167 | def _list_to_vector(self, size, destination): |
||
168 | if destination is None: |
||
169 | destination = np.zeros(size, dtype=np.float32) |
||
170 | |||
171 | for hit in self._list: |
||
172 | if hit.subject_id is not None: |
||
173 | destination[hit.subject_id] = hit.score |
||
174 | return destination |
||
175 | |||
176 | def as_list(self): |
||
177 | return self._list |
||
178 | |||
179 | def as_vector(self, size, destination=None): |
||
180 | if self._vector is None: |
||
181 | self._vector = self._list_to_vector(size, destination) |
||
182 | return self._vector |
||
183 | |||
184 | def filter(self, subject_index, limit=None, threshold=0.0): |
||
185 | hits = sorted(self._list, key=lambda hit: hit.score, reverse=True) |
||
186 | filtered_hits = [hit for hit in hits |
||
187 | if hit.score >= threshold and hit.score > 0.0 and |
||
188 | hit.subject_id is not None] |
||
189 | if limit is not None: |
||
190 | filtered_hits = filtered_hits[:limit] |
||
191 | return ListSuggestionResult(filtered_hits) |
||
192 | |||
193 | def __len__(self): |
||
194 | return len(self._list) |
||
195 |