1
|
|
|
"""Definitions for command-line (Click) commands for invoking Annif |
2
|
|
|
operations and printing the results to console.""" |
3
|
|
|
|
4
|
|
|
|
5
|
|
|
import collections |
6
|
|
|
import os.path |
7
|
|
|
import re |
8
|
|
|
import sys |
9
|
|
|
import json |
10
|
|
|
import click |
11
|
|
|
import click_log |
12
|
|
|
from flask import current_app |
13
|
|
|
from flask.cli import FlaskGroup, ScriptInfo |
14
|
|
|
import annif |
15
|
|
|
import annif.corpus |
16
|
|
|
import annif.parallel |
17
|
|
|
import annif.project |
18
|
|
|
import annif.registry |
19
|
|
|
from annif.project import Access |
20
|
|
|
from annif.suggestion import SuggestionFilter, ListSuggestionResult |
21
|
|
|
from annif.exception import ConfigurationException, NotSupportedException |
22
|
|
|
from annif.exception import NotInitializedException |
23
|
|
|
from annif.util import metric_code |
24
|
|
|
|
25
|
|
|
logger = annif.logger |
26
|
|
|
click_log.basic_config(logger) |
27
|
|
|
|
28
|
|
|
cli = FlaskGroup(create_app=annif.create_app, add_version_option=False) |
29
|
|
|
cli = click.version_option(message="%(version)s")(cli) |
30
|
|
|
|
31
|
|
|
|
32
|
|
|
def get_project(project_id): |
33
|
|
|
""" |
34
|
|
|
Helper function to get a project by ID and bail out if it doesn't exist""" |
35
|
|
|
try: |
36
|
|
|
return annif.registry.get_project(project_id, min_access=Access.private) |
37
|
|
|
except ValueError: |
38
|
|
|
click.echo("No projects found with id '{0}'.".format(project_id), err=True) |
39
|
|
|
sys.exit(1) |
40
|
|
|
|
41
|
|
|
|
42
|
|
|
def get_vocab(vocab_id): |
43
|
|
|
""" |
44
|
|
|
Helper function to get a vocabulary by ID and bail out if it doesn't |
45
|
|
|
exist""" |
46
|
|
|
try: |
47
|
|
|
return annif.registry.get_vocab(vocab_id, min_access=Access.private) |
48
|
|
|
except ValueError: |
49
|
|
|
click.echo(f"No vocabularies found with the id '{vocab_id}'.", err=True) |
50
|
|
|
sys.exit(1) |
51
|
|
|
|
52
|
|
|
|
53
|
|
|
def open_documents(paths, subject_index, vocab_lang, docs_limit): |
54
|
|
|
"""Helper function to open a document corpus from a list of pathnames, |
55
|
|
|
each of which is either a TSV file or a directory of TXT files. For |
56
|
|
|
directories with subjects in TSV files, the given vocabulary language |
57
|
|
|
will be used to convert subject labels into URIs. The corpus will be |
58
|
|
|
returned as an instance of DocumentCorpus or LimitingDocumentCorpus.""" |
59
|
|
|
|
60
|
|
|
def open_doc_path(path, subject_index): |
61
|
|
|
"""open a single path and return it as a DocumentCorpus""" |
62
|
|
|
if os.path.isdir(path): |
63
|
|
|
return annif.corpus.DocumentDirectory( |
64
|
|
|
path, subject_index, vocab_lang, require_subjects=True |
65
|
|
|
) |
66
|
|
|
return annif.corpus.DocumentFile(path, subject_index) |
67
|
|
|
|
68
|
|
|
if len(paths) == 0: |
69
|
|
|
logger.warning("Reading empty file") |
70
|
|
|
docs = open_doc_path(os.path.devnull, subject_index) |
71
|
|
|
elif len(paths) == 1: |
72
|
|
|
docs = open_doc_path(paths[0], subject_index) |
73
|
|
|
else: |
74
|
|
|
corpora = [open_doc_path(path, subject_index) for path in paths] |
75
|
|
|
docs = annif.corpus.CombinedCorpus(corpora) |
76
|
|
|
if docs_limit is not None: |
77
|
|
|
docs = annif.corpus.LimitingDocumentCorpus(docs, docs_limit) |
78
|
|
|
return docs |
79
|
|
|
|
80
|
|
|
|
81
|
|
|
def parse_backend_params(backend_param, project): |
82
|
|
|
"""Parse a list of backend parameters given with the --backend-param |
83
|
|
|
option into a nested dict structure""" |
84
|
|
|
backend_params = collections.defaultdict(dict) |
85
|
|
|
for beparam in backend_param: |
86
|
|
|
backend, param = beparam.split(".", 1) |
87
|
|
|
key, val = param.split("=", 1) |
88
|
|
|
validate_backend_params(backend, beparam, project) |
89
|
|
|
backend_params[backend][key] = val |
90
|
|
|
return backend_params |
91
|
|
|
|
92
|
|
|
|
93
|
|
|
def validate_backend_params(backend, beparam, project): |
94
|
|
|
if backend != project.config["backend"]: |
95
|
|
|
raise ConfigurationException( |
96
|
|
|
'The backend {} in CLI option "-b {}" not matching the project' |
97
|
|
|
" backend {}.".format(backend, beparam, project.config["backend"]) |
98
|
|
|
) |
99
|
|
|
|
100
|
|
|
|
101
|
|
|
BATCH_MAX_LIMIT = 15 |
102
|
|
|
|
103
|
|
|
|
104
|
|
|
def generate_filter_batches(subjects): |
105
|
|
|
import annif.eval |
106
|
|
|
|
107
|
|
|
filter_batches = collections.OrderedDict() |
108
|
|
|
for limit in range(1, BATCH_MAX_LIMIT + 1): |
109
|
|
|
for threshold in [i * 0.05 for i in range(20)]: |
110
|
|
|
hit_filter = SuggestionFilter(subjects, limit, threshold) |
111
|
|
|
batch = annif.eval.EvaluationBatch(subjects) |
112
|
|
|
filter_batches[(limit, threshold)] = (hit_filter, batch) |
113
|
|
|
return filter_batches |
114
|
|
|
|
115
|
|
|
|
116
|
|
|
def set_project_config_file_path(ctx, param, value): |
117
|
|
|
"""Override the default path or the path given in env by CLI option""" |
118
|
|
|
with ctx.ensure_object(ScriptInfo).load_app().app_context(): |
119
|
|
|
if value: |
120
|
|
|
current_app.config["PROJECTS_CONFIG_PATH"] = value |
121
|
|
|
|
122
|
|
|
|
123
|
|
|
def common_options(f): |
124
|
|
|
"""Decorator to add common options for all CLI commands""" |
125
|
|
|
f = click.option( |
126
|
|
|
"-p", |
127
|
|
|
"--projects", |
128
|
|
|
help="Set path to project configuration file or directory", |
129
|
|
|
type=click.Path(dir_okay=True, exists=True), |
130
|
|
|
callback=set_project_config_file_path, |
131
|
|
|
expose_value=False, |
132
|
|
|
is_eager=True, |
133
|
|
|
)(f) |
134
|
|
|
return click_log.simple_verbosity_option(logger)(f) |
135
|
|
|
|
136
|
|
|
|
137
|
|
|
def backend_param_option(f): |
138
|
|
|
"""Decorator to add an option for CLI commands to override BE parameters""" |
139
|
|
|
return click.option( |
140
|
|
|
"--backend-param", |
141
|
|
|
"-b", |
142
|
|
|
multiple=True, |
143
|
|
|
help="Override backend parameter of the config file. " |
144
|
|
|
+ "Syntax: `-b <backend>.<parameter>=<value>`.", |
145
|
|
|
)(f) |
146
|
|
|
|
147
|
|
|
|
148
|
|
|
@cli.command("list-projects") |
149
|
|
|
@common_options |
150
|
|
|
@click_log.simple_verbosity_option(logger, default="ERROR") |
151
|
|
|
def run_list_projects(): |
152
|
|
|
""" |
153
|
|
|
List available projects. |
154
|
|
|
\f |
155
|
|
|
Show a list of currently defined projects. Projects are defined in a |
156
|
|
|
configuration file, normally called ``projects.cfg``. See `Project |
157
|
|
|
configuration |
158
|
|
|
<https://github.com/NatLibFi/Annif/wiki/Project-configuration>`_ |
159
|
|
|
for details. |
160
|
|
|
""" |
161
|
|
|
|
162
|
|
|
template = "{0: <25}{1: <45}{2: <10}{3: <7}" |
163
|
|
|
header = template.format("Project ID", "Project Name", "Language", "Trained") |
164
|
|
|
click.echo(header) |
165
|
|
|
click.echo("-" * len(header)) |
166
|
|
|
for proj in annif.registry.get_projects(min_access=Access.private).values(): |
167
|
|
|
click.echo( |
168
|
|
|
template.format( |
169
|
|
|
proj.project_id, proj.name, proj.language, str(proj.is_trained) |
170
|
|
|
) |
171
|
|
|
) |
172
|
|
|
|
173
|
|
|
|
174
|
|
|
@cli.command("show-project") |
175
|
|
|
@click.argument("project_id") |
176
|
|
|
@common_options |
177
|
|
|
def run_show_project(project_id): |
178
|
|
|
""" |
179
|
|
|
Show information about a project. |
180
|
|
|
""" |
181
|
|
|
|
182
|
|
|
proj = get_project(project_id) |
183
|
|
|
click.echo(f"Project ID: {proj.project_id}") |
184
|
|
|
click.echo(f"Project Name: {proj.name}") |
185
|
|
|
click.echo(f"Language: {proj.language}") |
186
|
|
|
click.echo(f"Vocabulary: {proj.vocab.vocab_id}") |
187
|
|
|
click.echo(f"Vocab language: {proj.vocab_lang}") |
188
|
|
|
click.echo(f"Access: {proj.access.name}") |
189
|
|
|
click.echo(f"Trained: {proj.is_trained}") |
190
|
|
|
click.echo(f"Modification time: {proj.modification_time}") |
191
|
|
|
|
192
|
|
|
|
193
|
|
|
@cli.command("clear") |
194
|
|
|
@click.argument("project_id") |
195
|
|
|
@common_options |
196
|
|
|
def run_clear_project(project_id): |
197
|
|
|
""" |
198
|
|
|
Initialize the project to its original, untrained state. |
199
|
|
|
""" |
200
|
|
|
proj = get_project(project_id) |
201
|
|
|
proj.remove_model_data() |
202
|
|
|
|
203
|
|
|
|
204
|
|
|
@cli.command("list-vocabs") |
205
|
|
|
@common_options |
206
|
|
|
@click_log.simple_verbosity_option(logger, default="ERROR") |
207
|
|
|
def run_list_vocabs(): |
208
|
|
|
""" |
209
|
|
|
List available vocabularies. |
210
|
|
|
""" |
211
|
|
|
|
212
|
|
|
template = "{0: <20}{1: <20}{2: >10} {3: <6}" |
213
|
|
|
header = template.format("Vocabulary ID", "Languages", "Size", "Loaded") |
214
|
|
|
click.echo(header) |
215
|
|
|
click.echo("-" * len(header)) |
216
|
|
|
for vocab in annif.registry.get_vocabs(min_access=Access.private).values(): |
217
|
|
|
try: |
218
|
|
|
languages = ",".join(sorted(vocab.languages)) |
219
|
|
|
size = len(vocab) |
220
|
|
|
loaded = True |
221
|
|
|
except NotInitializedException: |
222
|
|
|
languages = "-" |
223
|
|
|
size = "-" |
224
|
|
|
loaded = False |
225
|
|
|
click.echo(template.format(vocab.vocab_id, languages, size, str(loaded))) |
226
|
|
|
|
227
|
|
|
|
228
|
|
|
@cli.command("load-vocab") |
229
|
|
|
@click.argument("vocab_id") |
230
|
|
|
@click.argument("subjectfile", type=click.Path(exists=True, dir_okay=False)) |
231
|
|
|
@click.option("--language", "-L", help="Language of subject file") |
232
|
|
|
@click.option( |
233
|
|
|
"--force", |
234
|
|
|
"-f", |
235
|
|
|
default=False, |
236
|
|
|
is_flag=True, |
237
|
|
|
help="Replace existing vocabulary completely " + "instead of updating it", |
238
|
|
|
) |
239
|
|
|
@common_options |
240
|
|
|
def run_load_vocab(vocab_id, language, force, subjectfile): |
241
|
|
|
""" |
242
|
|
|
Load a vocabulary from a subject file. |
243
|
|
|
""" |
244
|
|
|
vocab = get_vocab(vocab_id) |
245
|
|
|
if annif.corpus.SubjectFileSKOS.is_rdf_file(subjectfile): |
246
|
|
|
# SKOS/RDF file supported by rdflib |
247
|
|
|
subjects = annif.corpus.SubjectFileSKOS(subjectfile) |
248
|
|
|
click.echo(f"Loading vocabulary from SKOS file {subjectfile}...") |
249
|
|
|
elif annif.corpus.SubjectFileCSV.is_csv_file(subjectfile): |
250
|
|
|
# CSV file |
251
|
|
|
subjects = annif.corpus.SubjectFileCSV(subjectfile) |
252
|
|
|
click.echo(f"Loading vocabulary from CSV file {subjectfile}...") |
253
|
|
|
else: |
254
|
|
|
# probably a TSV file - we need to know its language |
255
|
|
|
if not language: |
256
|
|
|
click.echo( |
257
|
|
|
"Please use --language option to set the language of " |
258
|
|
|
+ "a TSV vocabulary.", |
259
|
|
|
err=True, |
260
|
|
|
) |
261
|
|
|
sys.exit(1) |
262
|
|
|
click.echo(f"Loading vocabulary from TSV file {subjectfile}...") |
263
|
|
|
subjects = annif.corpus.SubjectFileTSV(subjectfile, language) |
264
|
|
|
vocab.load_vocabulary(subjects, force=force) |
265
|
|
|
|
266
|
|
|
|
267
|
|
|
@cli.command("train") |
268
|
|
|
@click.argument("project_id") |
269
|
|
|
@click.argument("paths", type=click.Path(exists=True), nargs=-1) |
270
|
|
|
@click.option( |
271
|
|
|
"--cached/--no-cached", |
272
|
|
|
"-c/-C", |
273
|
|
|
default=False, |
274
|
|
|
help="Reuse preprocessed training data from previous run", |
275
|
|
|
) |
276
|
|
|
@click.option( |
277
|
|
|
"--docs-limit", |
278
|
|
|
"-d", |
279
|
|
|
default=None, |
280
|
|
|
type=click.IntRange(0, None), |
281
|
|
|
help="Maximum number of documents to use", |
282
|
|
|
) |
283
|
|
|
@click.option( |
284
|
|
|
"--jobs", |
285
|
|
|
"-j", |
286
|
|
|
default=0, |
287
|
|
|
help="Number of parallel jobs (0 means choose automatically)", |
288
|
|
|
) |
289
|
|
|
@backend_param_option |
290
|
|
|
@common_options |
291
|
|
|
def run_train(project_id, paths, cached, docs_limit, jobs, backend_param): |
292
|
|
|
""" |
293
|
|
|
Train a project on a collection of documents. |
294
|
|
|
\f |
295
|
|
|
This will train the project using the documents from ``PATHS`` (directories |
296
|
|
|
or possibly gzipped TSV files) in a single batch operation. If ``--cached`` |
297
|
|
|
is set, preprocessed training data from the previous run is reused instead |
298
|
|
|
of documents input; see `Reusing preprocessed training data |
299
|
|
|
<https://github.com/NatLibFi/Annif/wiki/ |
300
|
|
|
Reusing-preprocessed-training-data>`_. |
301
|
|
|
""" |
302
|
|
|
proj = get_project(project_id) |
303
|
|
|
backend_params = parse_backend_params(backend_param, proj) |
304
|
|
|
if cached: |
305
|
|
|
if len(paths) > 0: |
306
|
|
|
raise click.UsageError( |
307
|
|
|
"Corpus paths cannot be given when using --cached option." |
308
|
|
|
) |
309
|
|
|
documents = "cached" |
310
|
|
|
else: |
311
|
|
|
documents = open_documents(paths, proj.subjects, proj.vocab_lang, docs_limit) |
312
|
|
|
proj.train(documents, backend_params, jobs) |
313
|
|
|
|
314
|
|
|
|
315
|
|
|
@cli.command("learn") |
316
|
|
|
@click.argument("project_id") |
317
|
|
|
@click.argument("paths", type=click.Path(exists=True), nargs=-1) |
318
|
|
|
@click.option( |
319
|
|
|
"--docs-limit", |
320
|
|
|
"-d", |
321
|
|
|
default=None, |
322
|
|
|
type=click.IntRange(0, None), |
323
|
|
|
help="Maximum number of documents to use", |
324
|
|
|
) |
325
|
|
|
@backend_param_option |
326
|
|
|
@common_options |
327
|
|
|
def run_learn(project_id, paths, docs_limit, backend_param): |
328
|
|
|
""" |
329
|
|
|
Further train an existing project on a collection of documents. |
330
|
|
|
\f |
331
|
|
|
Similar to the ``train`` command. This will continue training an already |
332
|
|
|
trained project using the documents given by ``PATHS`` in a single batch |
333
|
|
|
operation. Not supported by all backends. |
334
|
|
|
""" |
335
|
|
|
proj = get_project(project_id) |
336
|
|
|
backend_params = parse_backend_params(backend_param, proj) |
337
|
|
|
documents = open_documents(paths, proj.subjects, proj.vocab_lang, docs_limit) |
338
|
|
|
proj.learn(documents, backend_params) |
339
|
|
|
|
340
|
|
|
|
341
|
|
|
@cli.command("suggest") |
342
|
|
|
@click.argument("project_id") |
343
|
|
|
@click.option("--limit", "-l", default=10, help="Maximum number of subjects") |
344
|
|
|
@click.option("--threshold", "-t", default=0.0, help="Minimum score threshold") |
345
|
|
|
@click.option("--language", "-L", help="Language of subject labels") |
346
|
|
|
@backend_param_option |
347
|
|
|
@common_options |
348
|
|
|
def run_suggest(project_id, limit, threshold, language, backend_param): |
349
|
|
|
""" |
350
|
|
|
Suggest subjects for a single document from standard input. |
351
|
|
|
\f |
352
|
|
|
This will read a text document from standard input and suggest subjects for |
353
|
|
|
it. |
354
|
|
|
""" |
355
|
|
|
project = get_project(project_id) |
356
|
|
|
text = sys.stdin.read() |
357
|
|
|
lang = language or project.vocab_lang |
358
|
|
|
if lang not in project.vocab.languages: |
359
|
|
|
raise click.BadParameter(f'language "{lang}" not supported by vocabulary') |
360
|
|
|
backend_params = parse_backend_params(backend_param, project) |
361
|
|
|
hit_filter = SuggestionFilter(project.subjects, limit, threshold) |
362
|
|
|
hits = hit_filter(project.suggest(text, backend_params)) |
363
|
|
|
for hit in hits.as_list(): |
364
|
|
|
subj = project.subjects[hit.subject_id] |
365
|
|
|
click.echo( |
366
|
|
|
"<{}>\t{}\t{}".format( |
367
|
|
|
subj.uri, |
368
|
|
|
"\t".join(filter(None, (subj.labels[lang], subj.notation))), |
369
|
|
|
hit.score, |
370
|
|
|
) |
371
|
|
|
) |
372
|
|
|
|
373
|
|
|
|
374
|
|
|
@cli.command("index") |
375
|
|
|
@click.argument("project_id") |
376
|
|
|
@click.argument("directory", type=click.Path(exists=True, file_okay=False)) |
377
|
|
|
@click.option( |
378
|
|
|
"--suffix", "-s", default=".annif", help="File name suffix for result files" |
379
|
|
|
) |
380
|
|
|
@click.option( |
381
|
|
|
"--force/--no-force", |
382
|
|
|
"-f/-F", |
383
|
|
|
default=False, |
384
|
|
|
help="Force overwriting of existing result files", |
385
|
|
|
) |
386
|
|
|
@click.option("--limit", "-l", default=10, help="Maximum number of subjects") |
387
|
|
|
@click.option("--threshold", "-t", default=0.0, help="Minimum score threshold") |
388
|
|
|
@click.option("--language", "-L", help="Language of subject labels") |
389
|
|
|
@backend_param_option |
390
|
|
|
@common_options |
391
|
|
|
def run_index( |
392
|
|
|
project_id, directory, suffix, force, limit, threshold, language, backend_param |
393
|
|
|
): |
394
|
|
|
""" |
395
|
|
|
Index a directory with documents, suggesting subjects for each document. |
396
|
|
|
Write the results in TSV files with the given suffix (``.annif`` by |
397
|
|
|
default). |
398
|
|
|
""" |
399
|
|
|
project = get_project(project_id) |
400
|
|
|
lang = language or project.vocab_lang |
401
|
|
|
if lang not in project.vocab.languages: |
402
|
|
|
raise click.BadParameter(f'language "{lang}" not supported by vocabulary') |
403
|
|
|
backend_params = parse_backend_params(backend_param, project) |
404
|
|
|
hit_filter = SuggestionFilter(project.subjects, limit, threshold) |
405
|
|
|
|
406
|
|
|
for docfilename, dummy_subjectfn in annif.corpus.DocumentDirectory( |
407
|
|
|
directory, project.subjects, project.vocab_lang, require_subjects=False |
408
|
|
|
): |
409
|
|
|
with open(docfilename, encoding="utf-8-sig") as docfile: |
410
|
|
|
text = docfile.read() |
411
|
|
|
subjectfilename = re.sub(r"\.txt$", suffix, docfilename) |
412
|
|
|
if os.path.exists(subjectfilename) and not force: |
413
|
|
|
click.echo( |
414
|
|
|
"Not overwriting {} (use --force to override)".format(subjectfilename) |
415
|
|
|
) |
416
|
|
|
continue |
417
|
|
|
with open(subjectfilename, "w", encoding="utf-8") as subjfile: |
418
|
|
|
results = project.suggest(text, backend_params) |
419
|
|
|
for hit in hit_filter(results).as_list(): |
420
|
|
|
subj = project.subjects[hit.subject_id] |
421
|
|
|
line = "<{}>\t{}\t{}".format( |
422
|
|
|
subj.uri, |
423
|
|
|
"\t".join(filter(None, (subj.labels[lang], subj.notation))), |
424
|
|
|
hit.score, |
425
|
|
|
) |
426
|
|
|
click.echo(line, file=subjfile) |
427
|
|
|
|
428
|
|
|
|
429
|
|
|
@cli.command("eval") |
430
|
|
|
@click.argument("project_id") |
431
|
|
|
@click.argument("paths", type=click.Path(exists=True), nargs=-1) |
432
|
|
|
@click.option("--limit", "-l", default=10, help="Maximum number of subjects") |
433
|
|
|
@click.option("--threshold", "-t", default=0.0, help="Minimum score threshold") |
434
|
|
|
@click.option( |
435
|
|
|
"--docs-limit", |
436
|
|
|
"-d", |
437
|
|
|
default=None, |
438
|
|
|
type=click.IntRange(0, None), |
439
|
|
|
help="Maximum number of documents to use", |
440
|
|
|
) |
441
|
|
|
@click.option( |
442
|
|
|
"--metric", |
443
|
|
|
"-m", |
444
|
|
|
default=[], |
445
|
|
|
multiple=True, |
446
|
|
|
help="Metric to calculate (default: all)", |
447
|
|
|
) |
448
|
|
|
@click.option( |
449
|
|
|
"--metrics-file", |
450
|
|
|
"-M", |
451
|
|
|
type=click.File("w", encoding="utf-8", errors="ignore", lazy=True), |
452
|
|
|
help="""Specify file in order to write evaluation metrics in JSON format. |
453
|
|
|
File directory must exist, existing file will be overwritten.""", |
454
|
|
|
) |
455
|
|
|
@click.option( |
456
|
|
|
"--results-file", |
457
|
|
|
"-r", |
458
|
|
|
type=click.File("w", encoding="utf-8", errors="ignore", lazy=True), |
459
|
|
|
help="""Specify file in order to write non-aggregated results per subject. |
460
|
|
|
File directory must exist, existing file will be overwritten.""", |
461
|
|
|
) |
462
|
|
|
@click.option( |
463
|
|
|
"--jobs", "-j", default=1, help="Number of parallel jobs (0 means all CPUs)" |
464
|
|
|
) |
465
|
|
|
@backend_param_option |
466
|
|
|
@common_options |
467
|
|
|
def run_eval( |
468
|
|
|
project_id, |
469
|
|
|
paths, |
470
|
|
|
limit, |
471
|
|
|
threshold, |
472
|
|
|
docs_limit, |
473
|
|
|
metric, |
474
|
|
|
metrics_file, |
475
|
|
|
results_file, |
476
|
|
|
jobs, |
477
|
|
|
backend_param, |
478
|
|
|
): |
479
|
|
|
""" |
480
|
|
|
Suggest subjects for documents and evaluate the results by comparing |
481
|
|
|
against a gold standard. |
482
|
|
|
\f |
483
|
|
|
With this command the documents from ``PATHS`` (directories or possibly |
484
|
|
|
gzipped TSV files) will be assigned subject suggestions and then |
485
|
|
|
statistical measures are calculated that quantify how well the suggested |
486
|
|
|
subjects match the gold-standard subjects in the documents. |
487
|
|
|
|
488
|
|
|
Normally the output is the list of the metrics calculated across documents. |
489
|
|
|
If ``--results-file <FILENAME>`` option is given, the metrics are |
490
|
|
|
calculated separately for each subject, and written to the given file. |
491
|
|
|
""" |
492
|
|
|
|
493
|
|
|
project = get_project(project_id) |
494
|
|
|
backend_params = parse_backend_params(backend_param, project) |
495
|
|
|
|
496
|
|
|
import annif.eval |
497
|
|
|
|
498
|
|
|
eval_batch = annif.eval.EvaluationBatch(project.subjects) |
499
|
|
|
|
500
|
|
|
if results_file: |
501
|
|
|
try: |
502
|
|
|
print("", end="", file=results_file) |
503
|
|
|
click.echo( |
504
|
|
|
"Writing per subject evaluation results to {!s}".format( |
505
|
|
|
results_file.name |
506
|
|
|
) |
507
|
|
|
) |
508
|
|
|
except Exception as e: |
509
|
|
|
raise NotSupportedException( |
510
|
|
|
"cannot open results-file for writing: " + str(e) |
511
|
|
|
) |
512
|
|
|
docs = open_documents(paths, project.subjects, project.vocab_lang, docs_limit) |
513
|
|
|
|
514
|
|
|
jobs, pool_class = annif.parallel.get_pool(jobs) |
515
|
|
|
|
516
|
|
|
project.initialize(parallel=True) |
517
|
|
|
psmap = annif.parallel.ProjectSuggestMap( |
518
|
|
|
project.registry, [project_id], backend_params, limit, threshold |
519
|
|
|
) |
520
|
|
|
|
521
|
|
|
with pool_class(jobs) as pool: |
522
|
|
|
for hits, subject_set in pool.imap_unordered(psmap.suggest, docs.documents): |
523
|
|
|
eval_batch.evaluate(hits[project_id], subject_set) |
524
|
|
|
|
525
|
|
|
template = "{0:<30}\t{1}" |
526
|
|
|
metrics = eval_batch.results( |
527
|
|
|
metrics=metric, results_file=results_file, language=project.vocab_lang |
528
|
|
|
) |
529
|
|
|
for metric, score in metrics.items(): |
530
|
|
|
click.echo(template.format(metric + ":", score)) |
531
|
|
|
if metrics_file: |
532
|
|
|
json.dump( |
533
|
|
|
{metric_code(mname): val for mname, val in metrics.items()}, |
534
|
|
|
metrics_file, |
535
|
|
|
indent=2, |
536
|
|
|
) |
537
|
|
|
|
538
|
|
|
|
539
|
|
|
@cli.command("optimize") |
540
|
|
|
@click.argument("project_id") |
541
|
|
|
@click.argument("paths", type=click.Path(exists=True), nargs=-1) |
542
|
|
|
@click.option( |
543
|
|
|
"--docs-limit", |
544
|
|
|
"-d", |
545
|
|
|
default=None, |
546
|
|
|
type=click.IntRange(0, None), |
547
|
|
|
help="Maximum number of documents to use", |
548
|
|
|
) |
549
|
|
|
@backend_param_option |
550
|
|
|
@common_options |
551
|
|
|
def run_optimize(project_id, paths, docs_limit, backend_param): |
552
|
|
|
""" |
553
|
|
|
Suggest subjects for documents, testing multiple limits and thresholds. |
554
|
|
|
\f |
555
|
|
|
This command will use different limit (maximum number of subjects) and |
556
|
|
|
score threshold values when assigning subjects to each document given by |
557
|
|
|
``PATHS`` and compare the results against the gold standard subjects in the |
558
|
|
|
documents. The output is a list of parameter combinations and their scores. |
559
|
|
|
From the output, you can determine the optimum limit and threshold |
560
|
|
|
parameters depending on which measure you want to target. |
561
|
|
|
""" |
562
|
|
|
project = get_project(project_id) |
563
|
|
|
backend_params = parse_backend_params(backend_param, project) |
564
|
|
|
|
565
|
|
|
filter_batches = generate_filter_batches(project.subjects) |
566
|
|
|
|
567
|
|
|
ndocs = 0 |
568
|
|
|
docs = open_documents(paths, project.subjects, project.vocab_lang, docs_limit) |
569
|
|
|
for doc in docs.documents: |
570
|
|
|
raw_hits = project.suggest(doc.text, backend_params) |
571
|
|
|
hits = raw_hits.filter(project.subjects, limit=BATCH_MAX_LIMIT) |
572
|
|
|
assert isinstance(hits, ListSuggestionResult), ( |
573
|
|
|
"Optimize should only be done with ListSuggestionResult " |
574
|
|
|
+ "as it would be very slow with VectorSuggestionResult." |
575
|
|
|
) |
576
|
|
|
for hit_filter, batch in filter_batches.values(): |
577
|
|
|
batch.evaluate(hit_filter(hits), doc.subject_set) |
578
|
|
|
ndocs += 1 |
579
|
|
|
|
580
|
|
|
click.echo("\t".join(("Limit", "Thresh.", "Prec.", "Rec.", "F1"))) |
581
|
|
|
|
582
|
|
|
best_scores = collections.defaultdict(float) |
583
|
|
|
best_params = {} |
584
|
|
|
|
585
|
|
|
template = "{:d}\t{:.02f}\t{:.04f}\t{:.04f}\t{:.04f}" |
586
|
|
|
# Store the batches in a list that gets consumed along the way |
587
|
|
|
# This way GC will have a chance to reclaim the memory |
588
|
|
|
filter_batches = list(filter_batches.items()) |
589
|
|
|
while filter_batches: |
590
|
|
|
params, filter_batch = filter_batches.pop(0) |
591
|
|
|
metrics = ["Precision (doc avg)", "Recall (doc avg)", "F1 score (doc avg)"] |
592
|
|
|
results = filter_batch[1].results(metrics=metrics) |
593
|
|
|
for metric, score in results.items(): |
594
|
|
|
if score >= best_scores[metric]: |
595
|
|
|
best_scores[metric] = score |
596
|
|
|
best_params[metric] = params |
597
|
|
|
click.echo( |
598
|
|
|
template.format( |
599
|
|
|
params[0], |
600
|
|
|
params[1], |
601
|
|
|
results["Precision (doc avg)"], |
602
|
|
|
results["Recall (doc avg)"], |
603
|
|
|
results["F1 score (doc avg)"], |
604
|
|
|
) |
605
|
|
|
) |
606
|
|
|
|
607
|
|
|
click.echo() |
608
|
|
|
template2 = "Best {:>19}: {:.04f}\tLimit: {:d}\tThreshold: {:.02f}" |
609
|
|
|
for metric in metrics: |
610
|
|
|
click.echo( |
611
|
|
|
template2.format( |
612
|
|
|
metric, |
613
|
|
|
best_scores[metric], |
614
|
|
|
best_params[metric][0], |
615
|
|
|
best_params[metric][1], |
616
|
|
|
) |
617
|
|
|
) |
618
|
|
|
click.echo("Documents evaluated:\t{}".format(ndocs)) |
619
|
|
|
|
620
|
|
|
|
621
|
|
|
@cli.command("hyperopt") |
622
|
|
|
@click.argument("project_id") |
623
|
|
|
@click.argument("paths", type=click.Path(exists=True), nargs=-1) |
624
|
|
|
@click.option( |
625
|
|
|
"--docs-limit", |
626
|
|
|
"-d", |
627
|
|
|
default=None, |
628
|
|
|
type=click.IntRange(0, None), |
629
|
|
|
help="Maximum number of documents to use", |
630
|
|
|
) |
631
|
|
|
@click.option("--trials", "-T", default=10, help="Number of trials") |
632
|
|
|
@click.option( |
633
|
|
|
"--jobs", "-j", default=1, help="Number of parallel runs (0 means all CPUs)" |
634
|
|
|
) |
635
|
|
|
@click.option( |
636
|
|
|
"--metric", "-m", default="NDCG", help="Metric to optimize (default: NDCG)" |
637
|
|
|
) |
638
|
|
|
@click.option( |
639
|
|
|
"--results-file", |
640
|
|
|
"-r", |
641
|
|
|
type=click.File("w", encoding="utf-8", errors="ignore", lazy=True), |
642
|
|
|
help="""Specify file path to write trial results as CSV. |
643
|
|
|
File directory must exist, existing file will be overwritten.""", |
644
|
|
|
) |
645
|
|
|
@common_options |
646
|
|
|
def run_hyperopt(project_id, paths, docs_limit, trials, jobs, metric, results_file): |
647
|
|
|
""" |
648
|
|
|
Optimize the hyperparameters of a project using validation documents from |
649
|
|
|
``PATHS``. Not supported by all backends. Output is a list of trial results |
650
|
|
|
and a report of the best performing parameters. |
651
|
|
|
""" |
652
|
|
|
proj = get_project(project_id) |
653
|
|
|
documents = open_documents(paths, proj.subjects, proj.vocab_lang, docs_limit) |
654
|
|
|
click.echo(f"Looking for optimal hyperparameters using {trials} trials") |
655
|
|
|
rec = proj.hyperopt(documents, trials, jobs, metric, results_file) |
656
|
|
|
click.echo(f"Got best {metric} score {rec.score:.4f} with:") |
657
|
|
|
click.echo("---") |
658
|
|
|
for line in rec.lines: |
659
|
|
|
click.echo(line) |
660
|
|
|
click.echo("---") |
661
|
|
|
|
662
|
|
|
|
663
|
|
|
if __name__ == "__main__": |
664
|
|
|
cli() |
665
|
|
|
|