1
|
|
|
"""Common functionality for backends.""" |
2
|
|
|
|
3
|
|
|
import abc |
4
|
|
|
import os.path |
5
|
|
|
from datetime import datetime, timezone |
6
|
|
|
from glob import glob |
7
|
|
|
|
8
|
|
|
from annif import logger |
9
|
|
|
|
10
|
|
|
|
11
|
|
|
class AnnifBackend(metaclass=abc.ABCMeta): |
12
|
|
|
"""Base class for Annif backends that perform analysis. The |
13
|
|
|
non-implemented methods should be overridden in subclasses.""" |
14
|
|
|
|
15
|
|
|
name = None |
16
|
|
|
|
17
|
|
|
DEFAULT_PARAMETERS = {"limit": 100} |
18
|
|
|
|
19
|
|
|
def __init__(self, backend_id, config_params, project): |
20
|
|
|
"""Initialize backend with specific parameters. The |
21
|
|
|
parameters are a dict. Keys and values depend on the specific |
22
|
|
|
backend type.""" |
23
|
|
|
self.backend_id = backend_id |
24
|
|
|
self.config_params = config_params |
25
|
|
|
self.project = project |
26
|
|
|
self.datadir = project.datadir |
27
|
|
|
|
28
|
|
|
def default_params(self): |
29
|
|
|
return self.DEFAULT_PARAMETERS |
30
|
|
|
|
31
|
|
|
@property |
32
|
|
|
def params(self): |
33
|
|
|
params = {} |
34
|
|
|
params.update(self.default_params()) |
35
|
|
|
params.update(self.config_params) |
36
|
|
|
return params |
37
|
|
|
|
38
|
|
|
@property |
39
|
|
|
def is_trained(self): |
40
|
|
|
return bool(glob(os.path.join(self.datadir, "*"))) |
41
|
|
|
|
42
|
|
|
@property |
43
|
|
|
def modification_time(self): |
44
|
|
|
mtimes = [ |
45
|
|
|
datetime.utcfromtimestamp(os.path.getmtime(p)) |
46
|
|
|
for p in glob(os.path.join(self.datadir, "*")) |
47
|
|
|
] |
48
|
|
|
most_recent = max(mtimes, default=None) |
49
|
|
|
if most_recent is None: |
50
|
|
|
return None |
51
|
|
|
return most_recent.replace(tzinfo=timezone.utc) |
52
|
|
|
|
53
|
|
|
def _get_backend_params(self, params): |
54
|
|
|
backend_params = dict(self.params) |
55
|
|
|
if params is not None: |
56
|
|
|
backend_params.update(params) |
57
|
|
|
return backend_params |
58
|
|
|
|
59
|
|
|
def _train(self, corpus, params, jobs=0): |
60
|
|
|
"""This method can be overridden by backends. It implements |
61
|
|
|
the train functionality, with pre-processed parameters.""" |
62
|
|
|
pass # default is to do nothing, subclasses may override |
63
|
|
|
|
64
|
|
|
def train(self, corpus, params=None, jobs=0): |
65
|
|
|
"""Train the model on the given document or subject corpus.""" |
66
|
|
|
beparams = self._get_backend_params(params) |
67
|
|
|
return self._train(corpus, params=beparams, jobs=jobs) |
68
|
|
|
|
69
|
|
|
def initialize(self, parallel=False): |
70
|
|
|
"""This method can be overridden by backends. It should cause the |
71
|
|
|
backend to pre-load all data it needs during operation. |
72
|
|
|
If parallel is True, the backend should expect to be used for |
73
|
|
|
parallel operation.""" |
74
|
|
|
pass |
75
|
|
|
|
76
|
|
|
@abc.abstractmethod |
77
|
|
|
def _suggest(self, text, params): |
78
|
|
|
"""This method should implemented by backends. It implements |
79
|
|
|
the suggest functionality, with pre-processed parameters.""" |
80
|
|
|
pass # pragma: no cover |
81
|
|
|
|
82
|
|
|
def _suggest_batch(self, texts, params): |
83
|
|
|
"""This method can be implemented by backends to use batching of documents in |
84
|
|
|
their operations. This default implementation uses the regular suggest |
85
|
|
|
functionality.""" |
86
|
|
|
return [self._suggest(text, params) for text in texts] |
87
|
|
|
|
88
|
|
|
def suggest(self, texts, params=None): |
89
|
|
|
"""Suggest subjects for the input documents and return a list of subject sets |
90
|
|
|
represented as a list of SubjectSuggestion objects.""" |
91
|
|
|
beparams = self._get_backend_params(params) |
92
|
|
|
self.initialize() |
93
|
|
|
return self._suggest_batch(texts, params=beparams) |
94
|
|
|
|
95
|
|
|
def debug(self, message): |
96
|
|
|
"""Log a debug message from this backend""" |
97
|
|
|
logger.debug("Backend {}: {}".format(self.backend_id, message)) |
98
|
|
|
|
99
|
|
|
def info(self, message): |
100
|
|
|
"""Log an info message from this backend""" |
101
|
|
|
logger.info("Backend {}: {}".format(self.backend_id, message)) |
102
|
|
|
|
103
|
|
|
def warning(self, message): |
104
|
|
|
"""Log a warning message from this backend""" |
105
|
|
|
logger.warning("Backend {}: {}".format(self.backend_id, message)) |
106
|
|
|
|
107
|
|
|
|
108
|
|
|
class AnnifLearningBackend(AnnifBackend): |
109
|
|
|
"""Base class for Annif backends that can perform online learning""" |
110
|
|
|
|
111
|
|
|
@abc.abstractmethod |
112
|
|
|
def _learn(self, corpus, params): |
113
|
|
|
"""This method should implemented by backends. It implements the learn |
114
|
|
|
functionality, with pre-processed parameters.""" |
115
|
|
|
pass # pragma: no cover |
116
|
|
|
|
117
|
|
|
def learn(self, corpus, params=None): |
118
|
|
|
"""Further train the model on the given document or subject corpus.""" |
119
|
|
|
beparams = self._get_backend_params(params) |
120
|
|
|
return self._learn(corpus, params=beparams) |
121
|
|
|
|