1
|
|
|
"""Ensemble backend that combines results from multiple projects""" |
2
|
|
|
|
3
|
|
|
|
4
|
|
|
from hyperopt import hp |
5
|
|
|
import annif.suggestion |
6
|
|
|
import annif.project |
7
|
|
|
import annif.util |
8
|
|
|
import annif.eval |
9
|
|
|
from . import hyperopt |
10
|
|
|
from annif.exception import NotSupportedException |
11
|
|
|
|
12
|
|
|
|
13
|
|
|
class EnsembleOptimizer(hyperopt.HyperparameterOptimizer): |
14
|
|
|
"""Hyperparameter optimizer for the ensemble backend""" |
15
|
|
|
|
16
|
|
|
def __init__(self, backend, corpus): |
17
|
|
|
super().__init__(backend, corpus) |
18
|
|
|
self._sources = [project_id for project_id, _ |
19
|
|
|
in annif.util.parse_sources( |
20
|
|
|
backend.config_params['sources'])] |
21
|
|
|
|
22
|
|
|
def get_hp_space(self): |
23
|
|
|
space = {} |
24
|
|
|
for project_id in self._sources: |
25
|
|
|
space[project_id] = hp.uniform(project_id, 0.0, 1.0) |
26
|
|
|
return space |
27
|
|
|
|
28
|
|
|
def _prepare(self): |
29
|
|
|
self._gold_subjects = [] |
30
|
|
|
self._source_hits = [] |
31
|
|
|
|
32
|
|
|
for doc in self._corpus.documents: |
33
|
|
|
self._gold_subjects.append( |
34
|
|
|
annif.corpus.SubjectSet((doc.uris, doc.labels))) |
35
|
|
|
srchits = {} |
36
|
|
|
for project_id in self._sources: |
37
|
|
|
source_project = annif.project.get_project(project_id) |
38
|
|
|
hits = source_project.suggest(doc.text) |
39
|
|
|
srchits[project_id] = hits |
40
|
|
|
self._source_hits.append(srchits) |
41
|
|
|
|
42
|
|
|
def _test(self, hps): |
43
|
|
|
batch = annif.eval.EvaluationBatch(self._backend.project.subjects) |
44
|
|
|
for goldsubj, srchits in zip(self._gold_subjects, self._source_hits): |
45
|
|
|
weighted_hits = [] |
46
|
|
|
for project_id, hits in srchits.items(): |
47
|
|
|
weighted_hits.append(annif.suggestion.WeightedSuggestion( |
48
|
|
|
hits=hits, weight=hps[project_id])) |
49
|
|
|
batch.evaluate( |
50
|
|
|
annif.util.merge_hits( |
51
|
|
|
weighted_hits, |
52
|
|
|
self._backend.project.subjects), |
53
|
|
|
goldsubj) |
54
|
|
|
results = batch.results() |
55
|
|
|
return 1 - results['NDCG'] |
56
|
|
|
|
57
|
|
|
|
58
|
|
|
class EnsembleBackend(hyperopt.AnnifHyperoptBackend): |
59
|
|
|
"""Ensemble backend that combines results from multiple projects""" |
60
|
|
|
name = "ensemble" |
61
|
|
|
|
62
|
|
|
def get_hp_optimizer(self, corpus): |
63
|
|
|
return EnsembleOptimizer(self, corpus) |
64
|
|
|
|
65
|
|
|
def _normalize_hits(self, hits, source_project): |
66
|
|
|
"""Hook for processing hits from backends. Intended to be overridden |
67
|
|
|
by subclasses.""" |
68
|
|
|
return hits |
69
|
|
|
|
70
|
|
|
def _suggest_with_sources(self, text, sources): |
71
|
|
|
hits_from_sources = [] |
72
|
|
|
for project_id, weight in sources: |
73
|
|
|
source_project = annif.project.get_project(project_id) |
74
|
|
|
hits = source_project.suggest(text) |
75
|
|
|
self.debug( |
76
|
|
|
'Got {} hits from project {}, weight {}'.format( |
77
|
|
|
len(hits), source_project.project_id, weight)) |
78
|
|
|
norm_hits = self._normalize_hits(hits, source_project) |
79
|
|
|
hits_from_sources.append( |
80
|
|
|
annif.suggestion.WeightedSuggestion( |
81
|
|
|
hits=norm_hits, weight=weight)) |
82
|
|
|
return hits_from_sources |
83
|
|
|
|
84
|
|
|
def _merge_hits_from_sources(self, hits_from_sources, params): |
85
|
|
|
"""Hook for merging hits from sources. Can be overridden by |
86
|
|
|
subclasses.""" |
87
|
|
|
return annif.util.merge_hits(hits_from_sources, self.project.subjects) |
88
|
|
|
|
89
|
|
|
def _suggest(self, text, params): |
90
|
|
|
sources = annif.util.parse_sources(params['sources']) |
91
|
|
|
hits_from_sources = self._suggest_with_sources(text, sources) |
92
|
|
|
merged_hits = self._merge_hits_from_sources(hits_from_sources, params) |
93
|
|
|
self.debug('{} hits after merging'.format(len(merged_hits))) |
94
|
|
|
return merged_hits |
95
|
|
|
|
96
|
|
|
def _train(self, corpus, params): |
97
|
|
|
raise NotSupportedException('Training ensemble model is not possible.') |
98
|
|
|
|