1
|
|
|
"""Neural network based ensemble backend that combines results from multiple |
2
|
|
|
projects.""" |
3
|
|
|
|
4
|
|
|
|
5
|
|
|
from io import BytesIO |
6
|
|
|
import shutil |
7
|
|
|
import os.path |
8
|
|
|
import numpy as np |
9
|
|
|
from scipy.sparse import csr_matrix, csc_matrix |
10
|
|
|
import joblib |
11
|
|
|
import lmdb |
12
|
|
|
from tensorflow.keras.layers import Input, Dense, Add, Flatten, Dropout, Layer |
13
|
|
|
from tensorflow.keras.models import Model, load_model |
14
|
|
|
from tensorflow.keras.utils import Sequence |
15
|
|
|
import tensorflow.keras.backend as K |
16
|
|
|
import annif.corpus |
17
|
|
|
import annif.parallel |
18
|
|
|
import annif.util |
19
|
|
|
from annif.exception import NotInitializedException, NotSupportedException |
20
|
|
|
from annif.suggestion import VectorSuggestionResult |
21
|
|
|
from . import backend |
22
|
|
|
from . import ensemble |
23
|
|
|
from . import hyperopt |
24
|
|
|
|
25
|
|
|
|
26
|
|
|
def idx_to_key(idx): |
27
|
|
|
"""convert an integer index to a binary key for use in LMDB""" |
28
|
|
|
return b'%08d' % idx |
29
|
|
|
|
30
|
|
|
|
31
|
|
|
def key_to_idx(key): |
32
|
|
|
"""convert a binary LMDB key to an integer index""" |
33
|
|
|
return int(key) |
34
|
|
|
|
35
|
|
|
|
36
|
|
View Code Duplication |
class LMDBSequence(Sequence): |
|
|
|
|
37
|
|
|
"""A sequence of samples stored in a LMDB database.""" |
38
|
|
|
|
39
|
|
|
def __init__(self, txn, batch_size): |
40
|
|
|
self._txn = txn |
41
|
|
|
cursor = txn.cursor() |
42
|
|
|
if cursor.last(): |
43
|
|
|
# Counter holds the number of samples in the database |
44
|
|
|
self._counter = key_to_idx(cursor.key()) + 1 |
45
|
|
|
else: # empty database |
46
|
|
|
self._counter = 0 |
47
|
|
|
self._batch_size = batch_size |
48
|
|
|
|
49
|
|
|
def add_sample(self, inputs, targets): |
50
|
|
|
# use zero-padded 8-digit key |
51
|
|
|
key = idx_to_key(self._counter) |
52
|
|
|
self._counter += 1 |
53
|
|
|
# convert the sample into a sparse matrix and serialize it as bytes |
54
|
|
|
sample = (csc_matrix(inputs), csr_matrix(targets)) |
55
|
|
|
buf = BytesIO() |
56
|
|
|
joblib.dump(sample, buf) |
57
|
|
|
buf.seek(0) |
58
|
|
|
self._txn.put(key, buf.read()) |
59
|
|
|
|
60
|
|
|
def __getitem__(self, idx): |
61
|
|
|
"""get a particular batch of samples""" |
62
|
|
|
cursor = self._txn.cursor() |
63
|
|
|
first_key = idx * self._batch_size |
64
|
|
|
cursor.set_key(idx_to_key(first_key)) |
65
|
|
|
input_arrays = [] |
66
|
|
|
target_arrays = [] |
67
|
|
|
for key, value in cursor.iternext(): |
68
|
|
|
if key_to_idx(key) >= (first_key + self._batch_size): |
69
|
|
|
break |
70
|
|
|
input_csr, target_csr = joblib.load(BytesIO(value)) |
71
|
|
|
input_arrays.append(input_csr.toarray()) |
72
|
|
|
target_arrays.append(target_csr.toarray().flatten()) |
73
|
|
|
return np.array(input_arrays), np.array(target_arrays) |
74
|
|
|
|
75
|
|
|
def __len__(self): |
76
|
|
|
"""return the number of available batches""" |
77
|
|
|
return int(np.ceil(self._counter / self._batch_size)) |
78
|
|
|
|
79
|
|
|
|
80
|
|
View Code Duplication |
class NNEnsembleOptimizer(hyperopt.HyperparameterOptimizer): |
|
|
|
|
81
|
|
|
"""Hyperparameter optimizer for the NN ensemble backend""" |
82
|
|
|
|
83
|
|
|
def _prepare(self, n_jobs=1): |
84
|
|
|
sources = dict( |
85
|
|
|
annif.util.parse_sources(self._backend.params['sources'])) |
86
|
|
|
|
87
|
|
|
# initialize the source projects before forking, to save memory |
88
|
|
|
for project_id in sources.keys(): |
89
|
|
|
project = self._backend.project.registry.get_project(project_id) |
90
|
|
|
project.initialize(parallel=True) |
91
|
|
|
|
92
|
|
|
psmap = annif.parallel.ProjectSuggestMap( |
93
|
|
|
self._backend.project.registry, |
94
|
|
|
list(sources.keys()), |
95
|
|
|
backend_params=None, |
96
|
|
|
limit=None, |
97
|
|
|
threshold=0.0) |
98
|
|
|
|
99
|
|
|
jobs, pool_class = annif.parallel.get_pool(n_jobs) |
100
|
|
|
|
101
|
|
|
self._score_vectors = [] |
102
|
|
|
self._gold_subjects = [] |
103
|
|
|
|
104
|
|
|
with pool_class(jobs) as pool: |
105
|
|
|
for hits, uris, labels in pool.imap_unordered( |
106
|
|
|
psmap.suggest, self._corpus.documents): |
107
|
|
|
doc_scores = [] |
108
|
|
|
for project_id, p_hits in hits.items(): |
109
|
|
|
vector = p_hits.as_vector(self._backend.project.subjects) |
110
|
|
|
doc_scores.append(np.sqrt(vector) |
111
|
|
|
* sources[project_id] |
112
|
|
|
* len(sources)) |
113
|
|
|
score_vector = np.array(doc_scores, |
114
|
|
|
dtype=np.float32).transpose() |
115
|
|
|
subjects = annif.corpus.SubjectSet((uris, labels)) |
116
|
|
|
self._score_vectors.append(score_vector) |
117
|
|
|
self._gold_subjects.append(subjects) |
118
|
|
|
|
119
|
|
|
def _objective(self, trial): |
120
|
|
|
sources = annif.util.parse_sources(self._backend.params['sources']) |
121
|
|
|
params = { |
122
|
|
|
'nodes': trial.suggest_int('nodes', 50, 200), |
123
|
|
|
'dropout_rate': trial.suggest_float('dropout_rate', 0.0, 0.5), |
124
|
|
|
'epochs': trial.suggest_int('epochs', 5, 20), |
125
|
|
|
'optimizer': 'adam' |
126
|
|
|
} |
127
|
|
|
model = self._backend._create_model(sources, params) |
128
|
|
|
|
129
|
|
|
env = self._backend._open_lmdb(True, |
130
|
|
|
self._backend.params['lmdb_map_size']) |
131
|
|
|
with env.begin(buffers=True) as txn: |
132
|
|
|
seq = LMDBSequence(txn, batch_size=32) |
133
|
|
|
model.fit(seq, verbose=0, epochs=params['epochs']) |
134
|
|
|
|
135
|
|
|
batch = annif.eval.EvaluationBatch(self._backend.project.subjects) |
136
|
|
|
for goldsubj, score_vector in zip(self._gold_subjects, |
137
|
|
|
self._score_vectors): |
138
|
|
|
|
139
|
|
|
results = model.predict( |
140
|
|
|
np.expand_dims(score_vector, 0)) |
141
|
|
|
output = VectorSuggestionResult(results[0]) |
142
|
|
|
batch.evaluate(output, goldsubj) |
143
|
|
|
eval_results = batch.results(metrics=[self._metric]) |
144
|
|
|
return eval_results[self._metric] |
145
|
|
|
|
146
|
|
|
def _postprocess(self, study): |
147
|
|
|
bp = study.best_params |
148
|
|
|
lines = [ |
149
|
|
|
f"nodes={bp['nodes']}", |
150
|
|
|
f"dropout_rate={bp['dropout_rate']}", |
151
|
|
|
f"epochs={bp['epochs']}" |
152
|
|
|
] |
153
|
|
|
return hyperopt.HPRecommendation(lines=lines, score=study.best_value) |
154
|
|
|
|
155
|
|
|
|
156
|
|
|
class MeanLayer(Layer): |
157
|
|
|
"""Custom Keras layer that calculates mean values along the 2nd axis.""" |
158
|
|
|
def call(self, inputs): |
159
|
|
|
return K.mean(inputs, axis=2) |
160
|
|
|
|
161
|
|
|
|
162
|
|
View Code Duplication |
class NNEnsembleBackend( |
|
|
|
|
163
|
|
|
backend.AnnifLearningBackend, |
164
|
|
|
ensemble.BaseEnsembleBackend, |
165
|
|
|
hyperopt.AnnifHyperoptBackend): |
166
|
|
|
"""Neural network ensemble backend that combines results from multiple |
167
|
|
|
projects""" |
168
|
|
|
|
169
|
|
|
name = "nn_ensemble" |
170
|
|
|
|
171
|
|
|
MODEL_FILE = "nn-model.h5" |
172
|
|
|
LMDB_FILE = 'nn-train.mdb' |
173
|
|
|
|
174
|
|
|
DEFAULT_PARAMETERS = { |
175
|
|
|
'nodes': 100, |
176
|
|
|
'dropout_rate': 0.2, |
177
|
|
|
'optimizer': 'adam', |
178
|
|
|
'epochs': 10, |
179
|
|
|
'learn-epochs': 1, |
180
|
|
|
'lmdb_map_size': 1024 * 1024 * 1024 |
181
|
|
|
} |
182
|
|
|
|
183
|
|
|
# defaults for uninitialized instances |
184
|
|
|
_model = None |
185
|
|
|
|
186
|
|
|
def get_hp_optimizer(self, corpus, metric): |
187
|
|
|
return NNEnsembleOptimizer(self, corpus, metric) |
188
|
|
|
|
189
|
|
|
def default_params(self): |
190
|
|
|
params = backend.AnnifBackend.DEFAULT_PARAMETERS.copy() |
191
|
|
|
params.update(self.DEFAULT_PARAMETERS) |
192
|
|
|
return params |
193
|
|
|
|
194
|
|
|
def initialize(self, parallel=False): |
195
|
|
|
super().initialize(parallel) |
196
|
|
|
if self._model is not None: |
197
|
|
|
return # already initialized |
198
|
|
|
if parallel: |
199
|
|
|
# Don't load TF model just before parallel execution, |
200
|
|
|
# since it won't work after forking worker processes |
201
|
|
|
return |
202
|
|
|
model_filename = os.path.join(self.datadir, self.MODEL_FILE) |
203
|
|
|
if not os.path.exists(model_filename): |
204
|
|
|
raise NotInitializedException( |
205
|
|
|
'model file {} not found'.format(model_filename), |
206
|
|
|
backend_id=self.backend_id) |
207
|
|
|
self.debug('loading Keras model from {}'.format(model_filename)) |
208
|
|
|
self._model = load_model(model_filename, |
209
|
|
|
custom_objects={'MeanLayer': MeanLayer}) |
210
|
|
|
|
211
|
|
|
def _merge_hits_from_sources(self, hits_from_sources, params): |
212
|
|
|
score_vector = np.array([np.sqrt(hits.as_vector(subjects)) |
213
|
|
|
* weight * len(hits_from_sources) |
214
|
|
|
for hits, weight, subjects |
215
|
|
|
in hits_from_sources], |
216
|
|
|
dtype=np.float32) |
217
|
|
|
results = self._model.predict( |
218
|
|
|
np.expand_dims(score_vector.transpose(), 0)) |
219
|
|
|
return VectorSuggestionResult(results[0]) |
220
|
|
|
|
221
|
|
|
def _create_model(self, sources, params): |
222
|
|
|
inputs = Input(shape=(len(self.project.subjects), len(sources))) |
223
|
|
|
|
224
|
|
|
flat_input = Flatten()(inputs) |
225
|
|
|
drop_input = Dropout( |
226
|
|
|
rate=float(params['dropout_rate']))(flat_input) |
227
|
|
|
hidden = Dense(int(params['nodes']), |
228
|
|
|
activation="relu")(drop_input) |
229
|
|
|
drop_hidden = Dropout(rate=float(params['dropout_rate']))(hidden) |
230
|
|
|
delta = Dense(len(self.project.subjects), |
231
|
|
|
kernel_initializer='zeros', |
232
|
|
|
bias_initializer='zeros')(drop_hidden) |
233
|
|
|
|
234
|
|
|
mean = MeanLayer()(inputs) |
235
|
|
|
|
236
|
|
|
predictions = Add()([mean, delta]) |
237
|
|
|
|
238
|
|
|
model = Model(inputs=inputs, outputs=predictions) |
239
|
|
|
model.compile(optimizer=params['optimizer'], |
240
|
|
|
loss='binary_crossentropy', |
241
|
|
|
metrics=['top_k_categorical_accuracy']) |
242
|
|
|
if 'lr' in params: |
243
|
|
|
model.optimizer.learning_rate.assign( |
244
|
|
|
float(params['lr'])) |
245
|
|
|
|
246
|
|
|
summary = [] |
247
|
|
|
model.summary(print_fn=summary.append) |
248
|
|
|
self.debug("Created model: \n" + "\n".join(summary)) |
249
|
|
|
return model |
250
|
|
|
|
251
|
|
|
def _train(self, corpus, params, jobs=0): |
252
|
|
|
sources = annif.util.parse_sources(params['sources']) |
253
|
|
|
self.info("creating NN ensemble model") |
254
|
|
|
self._model = self._create_model(sources, params) |
255
|
|
|
self._fit_model( |
256
|
|
|
corpus, |
257
|
|
|
epochs=int(params['epochs']), |
258
|
|
|
lmdb_map_size=int(params['lmdb_map_size']), |
259
|
|
|
n_jobs=jobs) |
260
|
|
|
|
261
|
|
|
def _corpus_to_vectors(self, corpus, seq, n_jobs): |
262
|
|
|
# pass corpus through all source projects |
263
|
|
|
sources = dict( |
264
|
|
|
annif.util.parse_sources(self.params['sources'])) |
265
|
|
|
|
266
|
|
|
# initialize the source projects before forking, to save memory |
267
|
|
|
self.info( |
268
|
|
|
f"Initializing source projects: {', '.join(sources.keys())}") |
269
|
|
|
for project_id in sources.keys(): |
270
|
|
|
project = self.project.registry.get_project(project_id) |
271
|
|
|
project.initialize(parallel=True) |
272
|
|
|
|
273
|
|
|
psmap = annif.parallel.ProjectSuggestMap( |
274
|
|
|
self.project.registry, |
275
|
|
|
list(sources.keys()), |
276
|
|
|
backend_params=None, |
277
|
|
|
limit=None, |
278
|
|
|
threshold=0.0) |
279
|
|
|
|
280
|
|
|
jobs, pool_class = annif.parallel.get_pool(n_jobs) |
281
|
|
|
|
282
|
|
|
self.info("Processing training documents...") |
283
|
|
|
with pool_class(jobs) as pool: |
284
|
|
|
for hits, uris, labels in pool.imap_unordered( |
285
|
|
|
psmap.suggest, corpus.documents): |
286
|
|
|
doc_scores = [] |
287
|
|
|
for project_id, p_hits in hits.items(): |
288
|
|
|
vector = p_hits.as_vector(self.project.subjects) |
289
|
|
|
doc_scores.append(np.sqrt(vector) |
290
|
|
|
* sources[project_id] |
291
|
|
|
* len(sources)) |
292
|
|
|
score_vector = np.array(doc_scores, |
293
|
|
|
dtype=np.float32).transpose() |
294
|
|
|
subjects = annif.corpus.SubjectSet((uris, labels)) |
295
|
|
|
true_vector = subjects.as_vector(self.project.subjects) |
296
|
|
|
seq.add_sample(score_vector, true_vector) |
297
|
|
|
|
298
|
|
|
def _open_lmdb(self, cached, lmdb_map_size): |
299
|
|
|
lmdb_path = os.path.join(self.datadir, self.LMDB_FILE) |
300
|
|
|
if not cached and os.path.exists(lmdb_path): |
301
|
|
|
shutil.rmtree(lmdb_path) |
302
|
|
|
return lmdb.open(lmdb_path, map_size=lmdb_map_size, writemap=True) |
303
|
|
|
|
304
|
|
|
def _fit_model(self, corpus, epochs, lmdb_map_size, n_jobs=1): |
305
|
|
|
env = self._open_lmdb(corpus == 'cached', lmdb_map_size) |
306
|
|
|
if corpus != 'cached': |
307
|
|
|
if corpus.is_empty(): |
308
|
|
|
raise NotSupportedException( |
309
|
|
|
'Cannot train nn_ensemble project with no documents') |
310
|
|
|
with env.begin(write=True, buffers=True) as txn: |
311
|
|
|
seq = LMDBSequence(txn, batch_size=32) |
312
|
|
|
self._corpus_to_vectors(corpus, seq, n_jobs) |
313
|
|
|
else: |
314
|
|
|
self.info("Reusing cached training data from previous run.") |
315
|
|
|
# fit the model using a read-only view of the LMDB |
316
|
|
|
self.info("Training neural network model...") |
317
|
|
|
with env.begin(buffers=True) as txn: |
318
|
|
|
seq = LMDBSequence(txn, batch_size=32) |
319
|
|
|
self._model.fit(seq, verbose=1, epochs=epochs) |
320
|
|
|
|
321
|
|
|
annif.util.atomic_save( |
322
|
|
|
self._model, |
323
|
|
|
self.datadir, |
324
|
|
|
self.MODEL_FILE) |
325
|
|
|
|
326
|
|
|
def _learn(self, corpus, params): |
327
|
|
|
self.initialize() |
328
|
|
|
self._fit_model( |
329
|
|
|
corpus, |
330
|
|
|
int(params['learn-epochs']), |
331
|
|
|
int(params['lmdb_map_size'])) |
332
|
|
|
|