Passed
Pull Request — master (#461)
by
unknown
01:54
created

annif.backend.yake   A

Complexity

Total Complexity 40

Size/Duplication

Total Lines 197
Duplicated Lines 0 %

Importance

Changes 0
Metric Value
eloc 163
dl 0
loc 197
rs 9.2
c 0
b 0
f 0
wmc 40

17 Methods

Rating   Name   Duplication   Size   Complexity  
B YakeBackend._create_index() 0 21 7
A YakeBackend.initialize() 0 10 1
A YakeBackend._lemmatize_phrase() 0 6 2
A YakeBackend._sort_phrase() 0 3 1
A YakeBackend.default_params() 0 4 1
A YakeBackend._combine_suggestions() 0 10 3
A YakeBackend._load_index() 0 7 3
A YakeBackend._save_index() 0 5 3
A YakeBackend.graph() 0 6 2
A YakeBackend._keyphrases2suggestions() 0 16 5
A YakeBackend.label_types() 0 14 3
A YakeBackend.is_trained() 0 3 1
A YakeBackend._keyphrase2uris() 0 4 1
A YakeBackend._transform_score() 0 5 2
A YakeBackend._conflate_scores() 0 2 1
A YakeBackend._initialize_index() 0 12 3
A YakeBackend._suggest() 0 16 1

How to fix   Complexity   

Complexity

Complex classes like annif.backend.yake often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.

Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.

1
"""Annif backend using Yake keyword extraction"""
2
# TODO Mention GPLv3 license also here?
3
4
import yake
5
import os.path
6
import re
7
from collections import defaultdict
8
from rdflib.namespace import SKOS, RDF, OWL
9
import rdflib
10
import annif.util
11
from . import backend
12
from annif.suggestion import SubjectSuggestion, ListSuggestionResult
13
from annif.exception import ConfigurationException
14
15
16
class YakeBackend(backend.AnnifBackend):
17
    """Yake based backend for Annif"""
18
    name = "yake"
19
    needs_subject_index = False
20
21
    # defaults for uninitialized instances
22
    _index = None
23
    _graph = None
24
    INDEX_FILE = 'yake-index'
25
26
    DEFAULT_PARAMETERS = {
27
        'max_ngram_size': 4,
28
        'deduplication_threshold': 0.9,
29
        'deduplication_algo': 'levs',
30
        'window_size': 1,
31
        'num_keywords': 100,
32
        'features': None,
33
        'default_label_types': ['pref', 'alt'],
34
        'remove_specifiers': False
35
    }
36
37
    def default_params(self):
38
        params = backend.AnnifBackend.DEFAULT_PARAMETERS.copy()
39
        params.update(self.DEFAULT_PARAMETERS)
40
        return params
41
42
    @property
43
    def is_trained(self):
44
        return True
45
46
    @property
47
    def label_types(self):
48
        mapping = {'pref': SKOS.prefLabel,
49
                   'alt': SKOS.altLabel,
50
                   'hidden': SKOS.hiddenLabel}
51
        if 'label_types' in self.params:
52
            lt_entries = self.params['label_types'].split(',')
53
            try:
54
                return [mapping[lt.strip()] for lt in lt_entries]
55
            except KeyError as err:
56
                raise ConfigurationException(
57
                    f'invalid label type {err}', backend_id=self.backend_id)
58
        else:
59
            return [mapping[lt] for lt in self.params['default_label_types']]
60
61
    def initialize(self):
62
        self._initialize_index()
63
        self._kw_extractor = yake.KeywordExtractor(
64
            lan=self.params['language'],
65
            n=self.params['max_ngram_size'],
66
            dedupLim=self.params['deduplication_threshold'],
67
            dedupFunc=self.params['deduplication_algo'],
68
            windowsSize=self.params['window_size'],
69
            top=self.params['num_keywords'],
70
            features=self.params['features'])
71
72
    def _initialize_index(self):
73
        if self._index is None:
74
            path = os.path.join(self.datadir, self.INDEX_FILE)
75
            if os.path.exists(path):
76
                self._index = self._load_index(path)
77
                self.info(
78
                    f'Loaded index from {path} with {len(self._index)} labels')
79
            else:
80
                self.info('Creating index')
81
                self._create_index()
82
                self._save_index(path)
83
                self.info(f'Created index with {len(self._index)} labels')
84
85
    @property
86
    def graph(self):
87
        if self._graph is None:
88
            self.info('Loading graph')
89
            self._graph = self.project.vocab.as_graph()
90
        return self._graph
91
92
    def _create_index(self):
93
        # TODO Should index creation & saving be done on loadvoc command?
94
        # Or saving at all? It takes about 1 min to create the index
95
        index = defaultdict(set)
96
        for label_type in self.label_types:
97
            for concept in self.graph.subjects(RDF.type, SKOS.Concept):
98
                if (concept, OWL.deprecated, rdflib.Literal(True)) \
99
                        in self.graph:
100
                    continue
101
                for label in self.graph.objects(concept, label_type):
102
                    if not label.language == self.params['language']:
103
                        continue
104
                    uri = str(concept)
105
                    label = str(label)
106
                    if annif.util.boolean(self.params['remove_specifiers']):
107
                        label = re.sub(r' \(.*\)', '', label)
108
                    lemmatized_label = self._lemmatize_phrase(label)
109
                    lemmatized_label = self._sort_phrase(lemmatized_label)
110
                    index[lemmatized_label].add(uri)
111
        index.pop('', None)  # Remove possible empty string entry
112
        self._index = dict(index)
113
114
    def _save_index(self, path):
115
        with open(path, 'w', encoding='utf-8') as indexfile:
116
            for label, uris in self._index.items():
117
                line = label + '\t' + ' '.join(uris)
118
                print(line, file=indexfile)
119
120
    def _load_index(self, path):
121
        index = dict()
122
        with open(path, 'r', encoding='utf-8') as indexfile:
123
            for line in indexfile:
124
                label, uris = line.strip().split('\t')
125
                index[label] = uris.split()
126
        return index
127
128
    def _sort_phrase(self, phrase):
129
        words = phrase.split()
130
        return ' '.join(sorted(words))
131
132
    def _lemmatize_phrase(self, phrase):
133
        normalized = []
134
        for word in phrase.split():
135
            normalized.append(
136
                self.project.analyzer.normalize_word(word).lower())
137
        return ' '.join(normalized)
138
139
    def _keyphrases2suggestions(self, keyphrases):
140
        suggestions = []
141
        not_matched = []
142
        for kp, score in keyphrases:
143
            uris = self._keyphrase2uris(kp)
144
            for uri in uris:
145
                suggestions.append(
146
                    (uri, self._transform_score(score)))
147
            if not uris:
148
                not_matched.append((kp, self._transform_score(score)))
149
        # Remove duplicate uris, conflating the scores
150
        suggestions = self._combine_suggestions(suggestions)
151
        self.debug('Keyphrases not matched:\n' + '\t'.join(
152
            [kp[0] + ' ' + str(kp[1]) for kp
153
             in sorted(not_matched, reverse=True, key=lambda kp: kp[1])]))
154
        return suggestions
155
156
    def _keyphrase2uris(self, keyphrase):
157
        keyphrase = self._lemmatize_phrase(keyphrase)
158
        keyphrase = self._sort_phrase(keyphrase)
159
        return self._index.get(keyphrase, [])
160
161
    def _transform_score(self, score):
162
        if score < 0:
163
            self.debug(f'Replacing negative YAKE score {score} with zero')
164
            return 1.0
165
        return 1.0 / (score + 1)
166
167
    def _combine_suggestions(self, suggestions):
168
        combined_suggestions = {}
169
        for uri, score in suggestions:
170
            if uri not in combined_suggestions:
171
                combined_suggestions[uri] = score
172
            else:
173
                old_score = combined_suggestions[uri]
174
                combined_suggestions[uri] = self._conflate_scores(
175
                    score, old_score)
176
        return list(combined_suggestions.items())
177
178
    def _conflate_scores(self, score1, score2):
179
        return score1 * score2 / (score1 * score2 + (1-score1) * (1-score2))
180
181
    def _suggest(self, text, params):
182
        self.debug(
183
            f'Suggesting subjects for text "{text[:20]}..." (len={len(text)})')
184
        limit = int(params['limit'])
185
186
        keyphrases = self._kw_extractor.extract_keywords(text)
187
        suggestions = self._keyphrases2suggestions(keyphrases)
188
189
        subject_suggestions = [SubjectSuggestion(
190
                uri=uri,
191
                label=None,
192
                notation=None,
193
                score=score)
194
                for uri, score in suggestions[:limit] if score > 0.0]
195
        return ListSuggestionResult.create_from_index(subject_suggestions,
196
                                                      self.project.subjects)
197