1
|
|
|
"""Evaluation metrics for Annif""" |
2
|
|
|
|
3
|
|
|
import statistics |
4
|
|
|
import warnings |
5
|
|
|
import numpy as np |
6
|
|
|
from sklearn.metrics import precision_score, recall_score, f1_score |
7
|
|
|
from sklearn.metrics import label_ranking_average_precision_score |
8
|
|
|
from annif.exception import NotSupportedException |
9
|
|
|
|
10
|
|
|
|
11
|
|
|
def filter_pred_top_k(preds, limit): |
12
|
|
|
"""filter a 2D prediction vector, retaining only the top K suggestions |
13
|
|
|
for each individual prediction; the rest will be set to zeros""" |
14
|
|
|
|
15
|
|
|
masks = [] |
16
|
|
|
for pred in preds: |
17
|
|
|
mask = np.zeros_like(pred, dtype=np.bool) |
18
|
|
|
top_k = np.argsort(pred)[::-1][:limit] |
19
|
|
|
mask[top_k] = True |
20
|
|
|
masks.append(mask) |
21
|
|
|
return preds * np.array(masks) |
22
|
|
|
|
23
|
|
|
|
24
|
|
|
def true_positives(y_true, y_pred): |
25
|
|
|
"""calculate the number of true positives using bitwise operations, |
26
|
|
|
emulating the way sklearn evaluation metric functions work""" |
27
|
|
|
return (y_true & y_pred).sum() |
28
|
|
|
|
29
|
|
|
|
30
|
|
|
def false_positives(y_true, y_pred): |
31
|
|
|
"""calculate the number of false positives using bitwise operations, |
32
|
|
|
emulating the way sklearn evaluation metric functions work""" |
33
|
|
|
return (~y_true & y_pred).sum() |
34
|
|
|
|
35
|
|
|
|
36
|
|
|
def false_negatives(y_true, y_pred): |
37
|
|
|
"""calculate the number of false negatives using bitwise operations, |
38
|
|
|
emulating the way sklearn evaluation metric functions work""" |
39
|
|
|
return (y_true & ~y_pred).sum() |
40
|
|
|
|
41
|
|
|
|
42
|
|
|
def precision_at_k_score(y_true, y_pred, limit): |
43
|
|
|
"""calculate the precision at K, i.e. the number of relevant items |
44
|
|
|
among the top K predicted ones""" |
45
|
|
|
scores = [] |
46
|
|
|
for true, pred in zip(y_true, y_pred): |
47
|
|
|
order = pred.argsort()[::-1] |
48
|
|
|
orderlimit = min(limit, np.count_nonzero(pred)) |
49
|
|
|
order = order[:orderlimit] |
50
|
|
|
gain = true[order] |
51
|
|
|
if orderlimit > 0: |
52
|
|
|
scores.append(gain.sum() / orderlimit) |
53
|
|
|
else: |
54
|
|
|
scores.append(0.0) |
55
|
|
|
return statistics.mean(scores) |
56
|
|
|
|
57
|
|
|
|
58
|
|
|
def dcg_score(y_true, y_pred, limit=None): |
59
|
|
|
"""return the discounted cumulative gain (DCG) score for the selected |
60
|
|
|
labels vs. relevant labels""" |
61
|
|
|
order = y_pred.argsort()[::-1] |
62
|
|
|
n_pred = np.count_nonzero(y_pred) |
63
|
|
|
if limit is not None: |
64
|
|
|
n_pred = min(limit, n_pred) |
65
|
|
|
order = order[:n_pred] |
66
|
|
|
gain = y_true[order] |
67
|
|
|
discount = np.log2(np.arange(order.size) + 2) |
68
|
|
|
|
69
|
|
|
return (gain / discount).sum() |
70
|
|
|
|
71
|
|
|
|
72
|
|
|
def ndcg_score(y_true, y_pred, limit=None): |
73
|
|
|
"""return the normalized discounted cumulative gain (nDCG) score for the |
74
|
|
|
selected labels vs. relevant labels""" |
75
|
|
|
scores = [] |
76
|
|
|
for true, pred in zip(y_true, y_pred): |
77
|
|
|
idcg = dcg_score(true, true, limit) |
78
|
|
|
dcg = dcg_score(true, pred, limit) |
79
|
|
|
if idcg > 0: |
80
|
|
|
scores.append(dcg / idcg) |
81
|
|
|
else: |
82
|
|
|
scores.append(1.0) # perfect score for no relevant hits case |
83
|
|
|
return statistics.mean(scores) |
84
|
|
|
|
85
|
|
|
|
86
|
|
|
class EvaluationBatch: |
87
|
|
|
"""A class for evaluating batches of results using all available metrics. |
88
|
|
|
The evaluate() method is called once per document in the batch. |
89
|
|
|
Final results can be queried using the results() method.""" |
90
|
|
|
|
91
|
|
|
def __init__(self, subject_index): |
92
|
|
|
self._subject_index = subject_index |
93
|
|
|
self._samples = [] |
94
|
|
|
|
95
|
|
|
def evaluate(self, hits, gold_subjects): |
96
|
|
|
self._samples.append((hits, gold_subjects)) |
97
|
|
|
|
98
|
|
|
def _evaluate_samples(self, y_true, y_pred, metrics='all'): |
99
|
|
|
y_pred_binary = y_pred > 0.0 |
100
|
|
|
|
101
|
|
|
# define the available metrics as lazy lambda functions |
102
|
|
|
# so we can execute only the ones actually requested |
103
|
|
|
all_metrics = { |
104
|
|
|
'Precision (doc avg)': lambda: precision_score( |
105
|
|
|
y_true, y_pred_binary, average='samples'), |
106
|
|
|
'Recall (doc avg)': lambda: recall_score( |
107
|
|
|
y_true, y_pred_binary, average='samples'), |
108
|
|
|
'F1 score (doc avg)': lambda: f1_score( |
109
|
|
|
y_true, y_pred_binary, average='samples'), |
110
|
|
|
'Precision (subj avg)': lambda: precision_score( |
111
|
|
|
y_true, y_pred_binary, average='macro'), |
112
|
|
|
'Recall (subj avg)': lambda: recall_score( |
113
|
|
|
y_true, y_pred_binary, average='macro'), |
114
|
|
|
'F1 score (subj avg)': lambda: f1_score( |
115
|
|
|
y_true, y_pred_binary, average='macro'), |
116
|
|
|
'Precision (weighted subj avg)': lambda: precision_score( |
117
|
|
|
y_true, y_pred_binary, average='weighted'), |
118
|
|
|
'Recall (weighted subj avg)': lambda: recall_score( |
119
|
|
|
y_true, y_pred_binary, average='weighted'), |
120
|
|
|
'F1 score (weighted subj avg)': lambda: f1_score( |
121
|
|
|
y_true, y_pred_binary, average='weighted'), |
122
|
|
|
'Precision (microavg)': lambda: precision_score( |
123
|
|
|
y_true, y_pred_binary, average='micro'), |
124
|
|
|
'Recall (microavg)': lambda: recall_score( |
125
|
|
|
y_true, y_pred_binary, average='micro'), |
126
|
|
|
'F1 score (microavg)': lambda: f1_score( |
127
|
|
|
y_true, y_pred_binary, average='micro'), |
128
|
|
|
'F1@5': lambda: f1_score( |
129
|
|
|
y_true, filter_pred_top_k(y_pred, 5) > 0.0, average='samples'), |
130
|
|
|
'NDCG': lambda: ndcg_score(y_true, y_pred), |
131
|
|
|
'NDCG@5': lambda: ndcg_score(y_true, y_pred, limit=5), |
132
|
|
|
'NDCG@10': lambda: ndcg_score(y_true, y_pred, limit=10), |
133
|
|
|
'Precision@1': lambda: precision_at_k_score( |
134
|
|
|
y_true, y_pred, limit=1), |
135
|
|
|
'Precision@3': lambda: precision_at_k_score( |
136
|
|
|
y_true, y_pred, limit=3), |
137
|
|
|
'Precision@5': lambda: precision_at_k_score( |
138
|
|
|
y_true, y_pred, limit=5), |
139
|
|
|
'LRAP': lambda: label_ranking_average_precision_score( |
140
|
|
|
y_true, y_pred), |
141
|
|
|
'True positives': lambda: true_positives( |
142
|
|
|
y_true, y_pred_binary), |
143
|
|
|
'False positives': lambda: false_positives( |
144
|
|
|
y_true, y_pred_binary), |
145
|
|
|
'False negatives': lambda: false_negatives( |
146
|
|
|
y_true, y_pred_binary), |
147
|
|
|
} |
148
|
|
|
|
149
|
|
|
if metrics == 'all': |
150
|
|
|
metrics = all_metrics.keys() |
151
|
|
|
|
152
|
|
|
with warnings.catch_warnings(): |
153
|
|
|
warnings.simplefilter('ignore') |
154
|
|
|
|
155
|
|
|
return {metric: all_metrics[metric]() for metric in metrics} |
156
|
|
|
|
157
|
|
|
def _result_per_subject_header(self, results_file): |
158
|
|
|
print('\t'.join(['URI', |
159
|
|
|
'Label', |
160
|
|
|
'Support', |
161
|
|
|
'True_positives', |
162
|
|
|
'False_positives', |
163
|
|
|
'False_negatives', |
164
|
|
|
'Precision', |
165
|
|
|
'Recall', |
166
|
|
|
'F1_score']), |
167
|
|
|
file=results_file) |
168
|
|
|
|
169
|
|
|
def _result_per_subject_body(self, zipped_results, results_file): |
170
|
|
|
for row in zipped_results: |
171
|
|
|
print('\t'.join((str(e) for e in row)), file=results_file) |
|
|
|
|
172
|
|
|
|
173
|
|
|
def output_result_per_subject(self, y_true, y_pred, results_file): |
174
|
|
|
"""Write results per subject (non-aggregated) |
175
|
|
|
to outputfile results_file""" |
176
|
|
|
|
177
|
|
|
y_pred = y_pred.T > 0.0 |
178
|
|
|
y_true = y_true.T > 0.0 |
179
|
|
|
|
180
|
|
|
true_pos = (y_true & y_pred) |
181
|
|
|
false_pos = (~y_true & y_pred) |
182
|
|
|
false_neg = (y_true & ~y_pred) |
183
|
|
|
|
184
|
|
|
r = len(y_true) |
185
|
|
|
|
186
|
|
|
zipped = zip(self._subject_index._uris, # URI |
187
|
|
|
self._subject_index._labels, # Label |
188
|
|
|
np.sum((true_pos + false_neg), axis=1), # Support |
189
|
|
|
np.sum(true_pos, axis=1), # True_positives |
190
|
|
|
np.sum(false_pos, axis=1), # False_positives |
191
|
|
|
np.sum(false_neg, axis=1), # False_negatives |
192
|
|
|
[precision_score(y_true[i], y_pred[i], zero_division=0) |
193
|
|
|
for i in range(r)], # Precision |
194
|
|
|
[recall_score(y_true[i], y_pred[i], zero_division=0) |
195
|
|
|
for i in range(r)], # Recall |
196
|
|
|
[f1_score(y_true[i], y_pred[i], zero_division=0) |
197
|
|
|
for i in range(r)]) # F1 |
198
|
|
|
self._result_per_subject_header(results_file) |
199
|
|
|
self._result_per_subject_body(zipped, results_file) |
200
|
|
|
|
201
|
|
|
def results(self, metrics='all', results_file=None, warnings=False): |
202
|
|
|
"""evaluate a set of selected subjects against a gold standard using |
203
|
|
|
different metrics. The set of metrics can be either 'all' or 'simple'. |
204
|
|
|
If results_file (file object) given, write results per subject to it""" |
205
|
|
|
|
206
|
|
|
if not self._samples: |
207
|
|
|
raise NotSupportedException("cannot evaluate empty corpus") |
208
|
|
|
|
209
|
|
|
y_true = np.array([gold_subjects.as_vector(self._subject_index, |
210
|
|
|
warnings=warnings) |
211
|
|
|
for hits, gold_subjects in self._samples]) |
212
|
|
|
y_pred = np.array([hits.as_vector(self._subject_index) |
213
|
|
|
for hits, gold_subjects in self._samples], |
214
|
|
|
dtype=np.float32) |
215
|
|
|
|
216
|
|
|
results = self._evaluate_samples( |
217
|
|
|
y_true, y_pred, metrics) |
218
|
|
|
results['Documents evaluated'] = y_true.shape[0] |
219
|
|
|
|
220
|
|
|
if results_file: |
221
|
|
|
self.output_result_per_subject(y_true, y_pred, results_file) |
222
|
|
|
return results |
223
|
|
|
|