1
|
|
|
"""Neural network based ensemble backend that combines results from multiple |
2
|
|
|
projects.""" |
3
|
|
|
|
4
|
|
|
|
5
|
|
|
from io import BytesIO |
6
|
|
|
import shutil |
7
|
|
|
import os.path |
8
|
|
|
import numpy as np |
9
|
|
|
from scipy.sparse import csr_matrix, csc_matrix |
10
|
|
|
import joblib |
11
|
|
|
import lmdb |
12
|
|
|
from tensorflow.keras.layers import Input, Dense, Add, Flatten, Lambda, Dropout |
13
|
|
|
from tensorflow.keras.models import Model, load_model |
14
|
|
|
from tensorflow.keras.utils import Sequence |
15
|
|
|
import tensorflow.keras.backend as K |
16
|
|
|
import annif.corpus |
17
|
|
|
import annif.util |
18
|
|
|
from annif.exception import NotInitializedException |
19
|
|
|
from annif.suggestion import VectorSuggestionResult |
20
|
|
|
from . import backend |
21
|
|
|
from . import ensemble |
22
|
|
|
|
23
|
|
|
|
24
|
|
|
def idx_to_key(idx): |
25
|
|
|
"""convert an integer index to a binary key for use in LMDB""" |
26
|
|
|
return b'%08d' % idx |
27
|
|
|
|
28
|
|
|
|
29
|
|
|
def key_to_idx(key): |
30
|
|
|
"""convert a binary LMDB key to an integer index""" |
31
|
|
|
return int(key) |
32
|
|
|
|
33
|
|
|
|
34
|
|
|
class LMDBSequence(Sequence): |
35
|
|
|
"""A sequence of samples stored in a LMDB database.""" |
36
|
|
|
|
37
|
|
|
def __init__(self, txn, batch_size): |
38
|
|
|
self._txn = txn |
39
|
|
|
cursor = txn.cursor() |
40
|
|
|
if cursor.last(): |
41
|
|
|
self._counter = key_to_idx(cursor.key()) |
42
|
|
|
else: # empty database |
43
|
|
|
self._counter = 0 |
44
|
|
|
self._batch_size = batch_size |
45
|
|
|
|
46
|
|
|
def add_sample(self, inputs, targets): |
47
|
|
|
# use zero-padded 8-digit key |
48
|
|
|
key = idx_to_key(self._counter) |
49
|
|
|
self._counter += 1 |
50
|
|
|
# convert the sample into a sparse matrix and serialize it as bytes |
51
|
|
|
sample = (csc_matrix(inputs), csr_matrix(targets)) |
52
|
|
|
buf = BytesIO() |
53
|
|
|
joblib.dump(sample, buf) |
54
|
|
|
buf.seek(0) |
55
|
|
|
self._txn.put(key, buf.read()) |
56
|
|
|
|
57
|
|
|
def __getitem__(self, idx): |
58
|
|
|
"""get a particular batch of samples""" |
59
|
|
|
cursor = self._txn.cursor() |
60
|
|
|
first_key = idx * self._batch_size |
61
|
|
|
cursor.set_key(idx_to_key(first_key)) |
62
|
|
|
input_arrays = [] |
63
|
|
|
target_arrays = [] |
64
|
|
|
for key, value in cursor.iternext(): |
65
|
|
|
if key_to_idx(key) >= (first_key + self._batch_size): |
66
|
|
|
break |
67
|
|
|
input_csr, target_csr = joblib.load(BytesIO(value)) |
68
|
|
|
input_arrays.append(input_csr.toarray()) |
69
|
|
|
target_arrays.append(target_csr.toarray().flatten()) |
70
|
|
|
return np.array(input_arrays), np.array(target_arrays) |
71
|
|
|
|
72
|
|
|
def __len__(self): |
73
|
|
|
"""return the number of available batches""" |
74
|
|
|
return int(np.ceil(self._counter / self._batch_size)) |
75
|
|
|
|
76
|
|
|
|
77
|
|
|
class NNEnsembleBackend( |
78
|
|
|
backend.AnnifLearningBackend, |
79
|
|
|
ensemble.BaseEnsembleBackend): |
80
|
|
|
"""Neural network ensemble backend that combines results from multiple |
81
|
|
|
projects""" |
82
|
|
|
|
83
|
|
|
name = "nn_ensemble" |
84
|
|
|
|
85
|
|
|
MODEL_FILE = "nn-model.h5" |
86
|
|
|
LMDB_FILE = 'nn-train.mdb' |
87
|
|
|
LMDB_MAP_SIZE = 1024 * 1024 * 1024 |
88
|
|
|
|
89
|
|
|
DEFAULT_PARAMETERS = { |
90
|
|
|
'nodes': 100, |
91
|
|
|
'dropout_rate': 0.2, |
92
|
|
|
'optimizer': 'adam', |
93
|
|
|
'epochs': 10, |
94
|
|
|
'learn-epochs': 1, |
95
|
|
|
} |
96
|
|
|
|
97
|
|
|
# defaults for uninitialized instances |
98
|
|
|
_model = None |
99
|
|
|
|
100
|
|
|
def default_params(self): |
101
|
|
|
params = {} |
102
|
|
|
params.update(super().default_params()) |
103
|
|
|
params.update(self.DEFAULT_PARAMETERS) |
104
|
|
|
return params |
105
|
|
|
|
106
|
|
|
def initialize(self): |
107
|
|
|
super().initialize() |
108
|
|
|
if self._model is not None: |
109
|
|
|
return # already initialized |
110
|
|
|
model_filename = os.path.join(self.datadir, self.MODEL_FILE) |
111
|
|
|
if not os.path.exists(model_filename): |
112
|
|
|
raise NotInitializedException( |
113
|
|
|
'model file {} not found'.format(model_filename), |
114
|
|
|
backend_id=self.backend_id) |
115
|
|
|
self.debug('loading Keras model from {}'.format(model_filename)) |
116
|
|
|
self._model = load_model(model_filename) |
117
|
|
|
|
118
|
|
|
def _merge_hits_from_sources(self, hits_from_sources, params): |
119
|
|
|
score_vector = np.array([hits.as_vector(subjects) * weight |
120
|
|
|
for hits, weight, subjects |
121
|
|
|
in hits_from_sources], |
122
|
|
|
dtype=np.float32) |
123
|
|
|
results = self._model.predict( |
124
|
|
|
np.expand_dims(score_vector.transpose(), 0)) |
125
|
|
|
return VectorSuggestionResult(results[0]) |
126
|
|
|
|
127
|
|
|
def _create_model(self, sources): |
128
|
|
|
self.info("creating NN ensemble model") |
129
|
|
|
|
130
|
|
|
inputs = Input(shape=(len(self.project.subjects), len(sources))) |
131
|
|
|
|
132
|
|
|
flat_input = Flatten()(inputs) |
133
|
|
|
drop_input = Dropout( |
134
|
|
|
rate=float( |
135
|
|
|
self.params['dropout_rate']))(flat_input) |
136
|
|
|
hidden = Dense(int(self.params['nodes']), |
137
|
|
|
activation="relu")(drop_input) |
138
|
|
|
drop_hidden = Dropout(rate=float(self.params['dropout_rate']))(hidden) |
139
|
|
|
delta = Dense(len(self.project.subjects), |
140
|
|
|
kernel_initializer='zeros', |
141
|
|
|
bias_initializer='zeros')(drop_hidden) |
142
|
|
|
|
143
|
|
|
mean = Lambda(lambda x: K.mean(x, axis=2))(inputs) |
144
|
|
|
|
145
|
|
|
predictions = Add()([mean, delta]) |
146
|
|
|
|
147
|
|
|
self._model = Model(inputs=inputs, outputs=predictions) |
148
|
|
|
self._model.compile(optimizer=self.params['optimizer'], |
149
|
|
|
loss='binary_crossentropy', |
150
|
|
|
metrics=['top_k_categorical_accuracy']) |
151
|
|
|
|
152
|
|
|
summary = [] |
153
|
|
|
self._model.summary(print_fn=summary.append) |
154
|
|
|
self.debug("Created model: \n" + "\n".join(summary)) |
155
|
|
|
|
156
|
|
|
def _train(self, corpus, params): |
157
|
|
|
sources = annif.util.parse_sources(self.params['sources']) |
158
|
|
|
self._create_model(sources) |
159
|
|
|
self._fit_model(corpus, epochs=int(params['epochs'])) |
160
|
|
|
|
161
|
|
|
def _corpus_to_vectors(self, corpus, seq): |
162
|
|
|
# pass corpus through all source projects |
163
|
|
|
sources = [(self.project.registry.get_project(project_id), weight) |
164
|
|
|
for project_id, weight |
165
|
|
|
in annif.util.parse_sources(self.params['sources'])] |
166
|
|
|
|
167
|
|
|
for doc in corpus.documents: |
168
|
|
|
doc_scores = [] |
169
|
|
|
for source_project, weight in sources: |
170
|
|
|
hits = source_project.suggest(doc.text) |
171
|
|
|
doc_scores.append( |
172
|
|
|
hits.as_vector(source_project.subjects) * weight) |
173
|
|
|
score_vector = np.array(doc_scores, |
174
|
|
|
dtype=np.float32).transpose() |
175
|
|
|
subjects = annif.corpus.SubjectSet((doc.uris, doc.labels)) |
176
|
|
|
true_vector = subjects.as_vector(self.project.subjects) |
177
|
|
|
seq.add_sample(score_vector, true_vector) |
178
|
|
|
|
179
|
|
|
def _open_lmdb(self, cached): |
180
|
|
|
lmdb_path = os.path.join(self.datadir, self.LMDB_FILE) |
181
|
|
|
if not cached and os.path.exists(lmdb_path): |
182
|
|
|
shutil.rmtree(lmdb_path) |
183
|
|
|
return lmdb.open(lmdb_path, map_size=self.LMDB_MAP_SIZE, writemap=True) |
184
|
|
|
|
185
|
|
|
def _fit_model(self, corpus, epochs): |
186
|
|
|
env = self._open_lmdb(corpus == 'cached') |
187
|
|
|
with env.begin(write=True, buffers=True) as txn: |
188
|
|
|
seq = LMDBSequence(txn, batch_size=32) |
189
|
|
|
if corpus != 'cached': |
190
|
|
|
self._corpus_to_vectors(corpus, seq) |
191
|
|
|
else: |
192
|
|
|
self.info("Reusing cached training data from previous run.") |
193
|
|
|
|
194
|
|
|
# fit the model |
195
|
|
|
self._model.fit(seq, verbose=True, epochs=epochs) |
196
|
|
|
|
197
|
|
|
annif.util.atomic_save( |
198
|
|
|
self._model, |
199
|
|
|
self.datadir, |
200
|
|
|
self.MODEL_FILE) |
201
|
|
|
|
202
|
|
|
def _learn(self, corpus, params): |
203
|
|
|
self.initialize() |
204
|
|
|
self._fit_model(corpus, int(params['learn-epochs'])) |
205
|
|
|
|