| Conditions | 26 | 
| Total Lines | 58 | 
| Code Lines | 51 | 
| Lines | 0 | 
| Ratio | 0 % | 
| Changes | 0 | ||
Small methods make your code easier to understand, in particular if combined with a good name. Besides, if your method is small, finding a good name is usually much easier.
For example, if you find yourself adding comments to a method's body, this is usually a good sign to extract the commented part to a new method, and use the comment as a starting point when coming up with a good name for this new method.
Commonly applied refactorings include:
If many parameters/temporary variables are present:
Complex classes like annif.eval.EvaluationBatch._evaluate_samples() often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.
Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.
| 1 | """Evaluation metrics for Annif"""  | 
            ||
| 98 | def _evaluate_samples(self, y_true, y_pred, metrics='all'):  | 
            ||
| 99 | y_pred_binary = y_pred > 0.0  | 
            ||
| 100 | |||
| 101 | # define the available metrics as lazy lambda functions  | 
            ||
| 102 | # so we can execute only the ones actually requested  | 
            ||
| 103 |         all_metrics = { | 
            ||
| 104 | 'Precision (doc avg)': lambda: precision_score(  | 
            ||
| 105 | y_true, y_pred_binary, average='samples'),  | 
            ||
| 106 | 'Recall (doc avg)': lambda: recall_score(  | 
            ||
| 107 | y_true, y_pred_binary, average='samples'),  | 
            ||
| 108 | 'F1 score (doc avg)': lambda: f1_score(  | 
            ||
| 109 | y_true, y_pred_binary, average='samples'),  | 
            ||
| 110 | 'Precision (subj avg)': lambda: precision_score(  | 
            ||
| 111 | y_true, y_pred_binary, average='macro'),  | 
            ||
| 112 | 'Recall (subj avg)': lambda: recall_score(  | 
            ||
| 113 | y_true, y_pred_binary, average='macro'),  | 
            ||
| 114 | 'F1 score (subj avg)': lambda: f1_score(  | 
            ||
| 115 | y_true, y_pred_binary, average='macro'),  | 
            ||
| 116 | 'Precision (weighted subj avg)': lambda: precision_score(  | 
            ||
| 117 | y_true, y_pred_binary, average='weighted'),  | 
            ||
| 118 | 'Recall (weighted subj avg)': lambda: recall_score(  | 
            ||
| 119 | y_true, y_pred_binary, average='weighted'),  | 
            ||
| 120 | 'F1 score (weighted subj avg)': lambda: f1_score(  | 
            ||
| 121 | y_true, y_pred_binary, average='weighted'),  | 
            ||
| 122 | 'Precision (microavg)': lambda: precision_score(  | 
            ||
| 123 | y_true, y_pred_binary, average='micro'),  | 
            ||
| 124 | 'Recall (microavg)': lambda: recall_score(  | 
            ||
| 125 | y_true, y_pred_binary, average='micro'),  | 
            ||
| 126 | 'F1 score (microavg)': lambda: f1_score(  | 
            ||
| 127 | y_true, y_pred_binary, average='micro'),  | 
            ||
| 128 | 'F1@5': lambda: f1_score(  | 
            ||
| 129 | y_true, filter_pred_top_k(y_pred, 5) > 0.0, average='samples'),  | 
            ||
| 130 | 'NDCG': lambda: ndcg_score(y_true, y_pred),  | 
            ||
| 131 | 'NDCG@5': lambda: ndcg_score(y_true, y_pred, limit=5),  | 
            ||
| 132 | 'NDCG@10': lambda: ndcg_score(y_true, y_pred, limit=10),  | 
            ||
| 133 | 'Precision@1': lambda: precision_at_k_score(  | 
            ||
| 134 | y_true, y_pred, limit=1),  | 
            ||
| 135 | 'Precision@3': lambda: precision_at_k_score(  | 
            ||
| 136 | y_true, y_pred, limit=3),  | 
            ||
| 137 | 'Precision@5': lambda: precision_at_k_score(  | 
            ||
| 138 | y_true, y_pred, limit=5),  | 
            ||
| 139 | 'LRAP': lambda: label_ranking_average_precision_score(  | 
            ||
| 140 | y_true, y_pred),  | 
            ||
| 141 | 'True positives': lambda: true_positives(  | 
            ||
| 142 | y_true, y_pred_binary),  | 
            ||
| 143 | 'False positives': lambda: false_positives(  | 
            ||
| 144 | y_true, y_pred_binary),  | 
            ||
| 145 | 'False negatives': lambda: false_negatives(  | 
            ||
| 146 | y_true, y_pred_binary),  | 
            ||
| 147 | }  | 
            ||
| 148 | |||
| 149 | if metrics == 'all':  | 
            ||
| 150 | metrics = all_metrics.keys()  | 
            ||
| 151 | |||
| 152 | with warnings.catch_warnings():  | 
            ||
| 153 |             warnings.simplefilter('ignore') | 
            ||
| 154 | |||
| 155 |             return {metric: all_metrics[metric]() for metric in metrics} | 
            ||
| 156 | |||
| 223 |