1
|
|
|
"""Hyperparameter optimization functionality for backends""" |
2
|
|
|
|
3
|
|
|
import abc |
4
|
|
|
import collections |
5
|
|
|
import warnings |
6
|
|
|
import optuna |
7
|
|
|
import optuna.exceptions |
8
|
|
|
from .backend import AnnifBackend |
9
|
|
|
from annif import logger |
10
|
|
|
|
11
|
|
|
|
12
|
|
|
HPRecommendation = collections.namedtuple('HPRecommendation', 'lines score') |
13
|
|
|
|
14
|
|
|
|
15
|
|
|
class TrialWriter: |
16
|
|
|
"""Object that writes hyperparameter optimization trial results into a |
17
|
|
|
TSV file.""" |
18
|
|
|
|
19
|
|
|
def __init__(self, results_file, normalize_func): |
20
|
|
|
self.results_file = results_file |
21
|
|
|
self.normalize_func = normalize_func |
22
|
|
|
self.header_written = False |
23
|
|
|
|
24
|
|
|
def write(self, study, trial): |
25
|
|
|
"""Write the results of one trial into the results file. On the |
26
|
|
|
first run, write the header line first.""" |
27
|
|
|
|
28
|
|
|
if not self.header_written: |
29
|
|
|
param_names = list(trial.params.keys()) |
30
|
|
|
print('\t'.join(['trial', 'value'] + param_names), |
31
|
|
|
file=self.results_file) |
32
|
|
|
self.header_written = True |
33
|
|
|
print('\t'.join((str(e) for e in [trial.number, trial.value] + |
34
|
|
|
list(self.normalize_func(trial.params).values()))), |
35
|
|
|
file=self.results_file) |
36
|
|
|
|
37
|
|
|
|
38
|
|
|
class HyperparameterOptimizer: |
39
|
|
|
"""Base class for hyperparameter optimizers""" |
40
|
|
|
|
41
|
|
|
def __init__(self, backend, corpus, metric): |
42
|
|
|
self._backend = backend |
43
|
|
|
self._corpus = corpus |
44
|
|
|
self._metric = metric |
45
|
|
|
|
46
|
|
|
def _prepare(self, n_jobs=1): |
47
|
|
|
"""Prepare the optimizer for hyperparameter evaluation. Up to |
48
|
|
|
n_jobs parallel threads or processes may be used during the |
49
|
|
|
operation.""" |
50
|
|
|
|
51
|
|
|
pass # pragma: no cover |
52
|
|
|
|
53
|
|
|
@abc.abstractmethod |
54
|
|
|
def _objective(self, trial): |
55
|
|
|
"""Objective function to optimize""" |
56
|
|
|
pass # pragma: no cover |
57
|
|
|
|
58
|
|
|
@abc.abstractmethod |
59
|
|
|
def _postprocess(self, study): |
60
|
|
|
"""Convert the study results into hyperparameter recommendations""" |
61
|
|
|
pass # pragma: no cover |
62
|
|
|
|
63
|
|
|
def _normalize(self, hps): |
64
|
|
|
"""Normalize the given raw hyperparameters. Intended to be overridden |
65
|
|
|
by subclasses when necessary. The default is to keep them as-is.""" |
66
|
|
|
return hps |
67
|
|
|
|
68
|
|
|
def optimize(self, n_trials, n_jobs, results_file): |
69
|
|
|
"""Find the optimal hyperparameters by testing up to the given number |
70
|
|
|
of hyperparameter combinations""" |
71
|
|
|
|
72
|
|
|
self._prepare(n_jobs) |
73
|
|
|
|
74
|
|
|
if results_file: |
75
|
|
|
callbacks = [TrialWriter(results_file, self._normalize).write] |
76
|
|
|
else: |
77
|
|
|
callbacks = [] |
78
|
|
|
|
79
|
|
|
study = optuna.create_study(direction='maximize') |
80
|
|
|
# silence the ExperimentalWarning when using the Optuna progress bar |
81
|
|
|
warnings.filterwarnings("ignore", |
82
|
|
|
category=optuna.exceptions.ExperimentalWarning) |
83
|
|
|
study.optimize(self._objective, |
84
|
|
|
n_trials=n_trials, |
85
|
|
|
n_jobs=n_jobs, |
86
|
|
|
callbacks=callbacks, |
87
|
|
|
gc_after_trial=False, |
88
|
|
|
show_progress_bar=(n_jobs == 1)) |
89
|
|
|
return self._postprocess(study) |
90
|
|
|
|
91
|
|
|
|
92
|
|
|
class AnnifHyperoptBackend(AnnifBackend): |
93
|
|
|
"""Base class for Annif backends that can perform hyperparameter |
94
|
|
|
optimization""" |
95
|
|
|
|
96
|
|
|
@abc.abstractmethod |
97
|
|
|
def get_hp_optimizer(self, corpus, metric): |
98
|
|
|
"""Get a HyperparameterOptimizer object that can look for |
99
|
|
|
optimal hyperparameter combinations for the given corpus, |
100
|
|
|
measured using the given metric""" |
101
|
|
|
|
102
|
|
|
pass # pragma: no cover |
103
|
|
|
|