| Total Complexity | 41 |
| Total Lines | 195 |
| Duplicated Lines | 82.05 % |
| Changes | 0 | ||
Duplicate code is one of the most pungent code smells. A rule that is often used is to re-structure code once it is duplicated in three or more places.
Common duplication problems, and corresponding solutions are:
Complex classes like annif.suggestion often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.
Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.
| 1 | """Representing suggested subjects.""" |
||
| 2 | |||
| 3 | import abc |
||
| 4 | import collections |
||
| 5 | import itertools |
||
| 6 | import numpy as np |
||
| 7 | |||
| 8 | |||
| 9 | SubjectSuggestion = collections.namedtuple( |
||
| 10 | 'SubjectSuggestion', 'subject_id score') |
||
| 11 | WeightedSuggestion = collections.namedtuple( |
||
| 12 | 'WeightedSuggestion', 'hits weight subjects') |
||
| 13 | |||
| 14 | |||
| 15 | class SuggestionFilter: |
||
| 16 | """A reusable filter for filtering SubjectSuggestion objects.""" |
||
| 17 | |||
| 18 | def __init__(self, subject_index, limit=None, threshold=0.0): |
||
| 19 | self._subject_index = subject_index |
||
| 20 | self._limit = limit |
||
| 21 | self._threshold = threshold |
||
| 22 | |||
| 23 | def __call__(self, orighits): |
||
| 24 | return LazySuggestionResult( |
||
| 25 | lambda: orighits.filter(self._subject_index, |
||
| 26 | self._limit, |
||
| 27 | self._threshold)) |
||
| 28 | |||
| 29 | |||
| 30 | View Code Duplication | class SuggestionResult(metaclass=abc.ABCMeta): |
|
|
|
|||
| 31 | """Abstract base class for a set of hits returned by an analysis |
||
| 32 | operation.""" |
||
| 33 | |||
| 34 | @abc.abstractmethod |
||
| 35 | def as_list(self): |
||
| 36 | """Return the hits as an ordered sequence of SubjectSuggestion objects, |
||
| 37 | highest scores first.""" |
||
| 38 | pass # pragma: no cover |
||
| 39 | |||
| 40 | @abc.abstractmethod |
||
| 41 | def as_vector(self, size, destination=None): |
||
| 42 | """Return the hits as a one-dimensional score vector of given size. |
||
| 43 | If destination array is given (not None) it will be used, otherwise a |
||
| 44 | new array will be created.""" |
||
| 45 | pass # pragma: no cover |
||
| 46 | |||
| 47 | @abc.abstractmethod |
||
| 48 | def filter(self, subject_index, limit=None, threshold=0.0): |
||
| 49 | """Return a subset of the hits, filtered by the given limit and |
||
| 50 | score threshold, as another SuggestionResult object.""" |
||
| 51 | pass # pragma: no cover |
||
| 52 | |||
| 53 | @abc.abstractmethod |
||
| 54 | def __len__(self): |
||
| 55 | """Return the number of hits with non-zero scores.""" |
||
| 56 | pass # pragma: no cover |
||
| 57 | |||
| 58 | |||
| 59 | View Code Duplication | class LazySuggestionResult(SuggestionResult): |
|
| 60 | """SuggestionResult implementation that wraps another SuggestionResult which |
||
| 61 | is initialized lazily only when it is actually accessed. Method calls |
||
| 62 | will be proxied to the wrapped SuggestionResult.""" |
||
| 63 | |||
| 64 | def __init__(self, construct): |
||
| 65 | """Create the proxy object. The given construct function will be |
||
| 66 | called to create the actual SuggestionResult when it is needed.""" |
||
| 67 | self._construct = construct |
||
| 68 | self._object = None |
||
| 69 | |||
| 70 | def _initialize(self): |
||
| 71 | if self._object is None: |
||
| 72 | self._object = self._construct() |
||
| 73 | |||
| 74 | def as_list(self): |
||
| 75 | self._initialize() |
||
| 76 | return self._object.as_list() |
||
| 77 | |||
| 78 | def as_vector(self, size, destination=None): |
||
| 79 | self._initialize() |
||
| 80 | return self._object.as_vector(size, destination) |
||
| 81 | |||
| 82 | def filter(self, subject_index, limit=None, threshold=0.0): |
||
| 83 | self._initialize() |
||
| 84 | return self._object.filter(subject_index, limit, threshold) |
||
| 85 | |||
| 86 | def __len__(self): |
||
| 87 | self._initialize() |
||
| 88 | return len(self._object) |
||
| 89 | |||
| 90 | |||
| 91 | View Code Duplication | class VectorSuggestionResult(SuggestionResult): |
|
| 92 | """SuggestionResult implementation based primarily on NumPy vectors.""" |
||
| 93 | |||
| 94 | def __init__(self, vector): |
||
| 95 | vector_f32 = vector.astype(np.float32) |
||
| 96 | # limit scores to the range 0.0 .. 1.0 |
||
| 97 | self._vector = np.minimum(np.maximum(vector_f32, 0.0), 1.0) |
||
| 98 | self._subject_order = None |
||
| 99 | self._lsr = None |
||
| 100 | |||
| 101 | def _vector_to_list_suggestion(self): |
||
| 102 | hits = [] |
||
| 103 | for subject_id in self.subject_order: |
||
| 104 | score = self._vector[subject_id] |
||
| 105 | if score <= 0.0: |
||
| 106 | break # we can skip the remaining ones |
||
| 107 | hits.append( |
||
| 108 | SubjectSuggestion( |
||
| 109 | subject_id=subject_id, |
||
| 110 | score=float(score))) |
||
| 111 | return ListSuggestionResult(hits) |
||
| 112 | |||
| 113 | @property |
||
| 114 | def subject_order(self): |
||
| 115 | if self._subject_order is None: |
||
| 116 | self._subject_order = np.argsort(self._vector)[::-1] |
||
| 117 | return self._subject_order |
||
| 118 | |||
| 119 | def as_list(self): |
||
| 120 | if self._lsr is None: |
||
| 121 | self._lsr = self._vector_to_list_suggestion() |
||
| 122 | return self._lsr.as_list() |
||
| 123 | |||
| 124 | def as_vector(self, size, destination=None): |
||
| 125 | if destination is not None: |
||
| 126 | np.copyto(destination, self._vector) |
||
| 127 | return destination |
||
| 128 | return self._vector |
||
| 129 | |||
| 130 | def filter(self, subject_index, limit=None, threshold=0.0): |
||
| 131 | mask = (self._vector > threshold) |
||
| 132 | deprecated_ids = subject_index.deprecated_ids() |
||
| 133 | if limit is not None: |
||
| 134 | limit_mask = np.zeros_like(self._vector, dtype=bool) |
||
| 135 | deprecated_set = set(deprecated_ids) |
||
| 136 | top_k_subjects = itertools.islice( |
||
| 137 | (subj for subj in self.subject_order |
||
| 138 | if subj not in deprecated_set), limit) |
||
| 139 | limit_mask[list(top_k_subjects)] = True |
||
| 140 | mask = mask & limit_mask |
||
| 141 | else: |
||
| 142 | deprecated_mask = np.ones_like(self._vector, dtype=bool) |
||
| 143 | deprecated_mask[deprecated_ids] = False |
||
| 144 | mask = mask & deprecated_mask |
||
| 145 | vsr = VectorSuggestionResult(self._vector * mask) |
||
| 146 | return ListSuggestionResult(vsr.as_list()) |
||
| 147 | |||
| 148 | def __len__(self): |
||
| 149 | return (self._vector > 0.0).sum() |
||
| 150 | |||
| 151 | |||
| 152 | View Code Duplication | class ListSuggestionResult(SuggestionResult): |
|
| 153 | """SuggestionResult implementation based primarily on lists of hits.""" |
||
| 154 | |||
| 155 | def __init__(self, hits): |
||
| 156 | self._list = [self._enforce_score_range(hit) |
||
| 157 | for hit in hits |
||
| 158 | if hit.score > 0.0] |
||
| 159 | self._vector = None |
||
| 160 | |||
| 161 | @staticmethod |
||
| 162 | def _enforce_score_range(hit): |
||
| 163 | if hit.score > 1.0: |
||
| 164 | return hit._replace(score=1.0) |
||
| 165 | return hit |
||
| 166 | |||
| 167 | def _list_to_vector(self, size, destination): |
||
| 168 | if destination is None: |
||
| 169 | destination = np.zeros(size, dtype=np.float32) |
||
| 170 | |||
| 171 | for hit in self._list: |
||
| 172 | if hit.subject_id is not None: |
||
| 173 | destination[hit.subject_id] = hit.score |
||
| 174 | return destination |
||
| 175 | |||
| 176 | def as_list(self): |
||
| 177 | return self._list |
||
| 178 | |||
| 179 | def as_vector(self, size, destination=None): |
||
| 180 | if self._vector is None: |
||
| 181 | self._vector = self._list_to_vector(size, destination) |
||
| 182 | return self._vector |
||
| 183 | |||
| 184 | def filter(self, subject_index, limit=None, threshold=0.0): |
||
| 185 | hits = sorted(self._list, key=lambda hit: hit.score, reverse=True) |
||
| 186 | filtered_hits = [hit for hit in hits |
||
| 187 | if hit.score >= threshold and hit.score > 0.0 and |
||
| 188 | hit.subject_id is not None] |
||
| 189 | if limit is not None: |
||
| 190 | filtered_hits = filtered_hits[:limit] |
||
| 191 | return ListSuggestionResult(filtered_hits) |
||
| 192 | |||
| 193 | def __len__(self): |
||
| 194 | return len(self._list) |
||
| 195 |