1
|
|
|
"""Backend utilizing a large-language model.""" |
2
|
|
|
|
3
|
|
|
from __future__ import annotations |
4
|
|
|
|
5
|
|
|
import json |
6
|
|
|
import os |
7
|
|
|
from typing import TYPE_CHECKING, Any, Optional |
8
|
|
|
|
9
|
|
|
import tiktoken |
10
|
|
|
from openai import AzureOpenAI, BadRequestError, OpenAIError |
11
|
|
|
|
12
|
|
|
import annif.eval |
13
|
|
|
import annif.parallel |
14
|
|
|
import annif.util |
15
|
|
|
from annif.exception import NotSupportedException, OperationFailedException |
16
|
|
|
from annif.suggestion import SubjectSuggestion, SuggestionBatch |
17
|
|
|
|
18
|
|
|
from . import backend, ensemble |
19
|
|
|
|
20
|
|
|
if TYPE_CHECKING: |
21
|
|
|
from annif.corpus.document import DocumentCorpus |
22
|
|
|
|
23
|
|
|
|
24
|
|
|
class BaseLLMBackend(backend.AnnifBackend): |
25
|
|
|
"""Base class for LLM backends""" |
26
|
|
|
|
27
|
|
|
DEFAULT_PARAMETERS = { |
28
|
|
|
"api_version": "2024-10-21", |
29
|
|
|
"temperature": 0.0, |
30
|
|
|
"top_p": 1.0, |
31
|
|
|
"seed": 0, |
32
|
|
|
} |
33
|
|
|
|
34
|
|
|
def initialize(self, parallel: bool = False) -> None: |
35
|
|
|
super().initialize(parallel) |
36
|
|
|
self.client = AzureOpenAI( |
37
|
|
|
azure_endpoint=self.params["endpoint"], |
38
|
|
|
api_version=self.params["api_version"], |
39
|
|
|
api_key=os.getenv("AZURE_OPENAI_KEY"), |
40
|
|
|
) |
41
|
|
|
self._verify_connection() |
42
|
|
|
|
43
|
|
|
def _verify_connection(self): |
44
|
|
|
try: |
45
|
|
|
self._call_llm( |
46
|
|
|
system_prompt="You are a helpful assistant.", |
47
|
|
|
prompt="This is a test prompt to verify the connection.", |
48
|
|
|
model=self.params["model"], |
49
|
|
|
params=self.params, |
50
|
|
|
) |
51
|
|
|
except OpenAIError as err: |
52
|
|
|
raise OperationFailedException( |
53
|
|
|
f"Failed to connect to endpoint {self.params['endpoint']}: {err}" |
54
|
|
|
) from err |
55
|
|
|
print(f"Successfully connected to endpoint {self.params['endpoint']}") |
56
|
|
|
|
57
|
|
|
def default_params(self): |
58
|
|
|
params = backend.AnnifBackend.DEFAULT_PARAMETERS.copy() |
59
|
|
|
params.update(BaseLLMBackend.DEFAULT_PARAMETERS.copy()) |
60
|
|
|
params.update(self.DEFAULT_PARAMETERS) |
61
|
|
|
return params |
62
|
|
|
|
63
|
|
|
def _truncate_text(self, text, encoding, max_prompt_tokens): |
64
|
|
|
"""Truncate text so it contains at most max_prompt_tokens according to the |
65
|
|
|
OpenAI tokenizer""" |
66
|
|
|
tokens = encoding.encode(text) |
67
|
|
|
return encoding.decode(tokens[:max_prompt_tokens]) |
68
|
|
|
|
69
|
|
|
def _call_llm( |
70
|
|
|
self, |
71
|
|
|
system_prompt: str, |
72
|
|
|
prompt: str, |
73
|
|
|
model: str, |
74
|
|
|
params: dict[str, Any], |
75
|
|
|
response_format: Optional[dict] = None, |
76
|
|
|
) -> str: |
77
|
|
|
temperature = float(params["temperature"]) |
78
|
|
|
top_p = float(params["top_p"]) |
79
|
|
|
seed = int(params["seed"]) |
80
|
|
|
|
81
|
|
|
messages = [ |
82
|
|
|
{"role": "system", "content": system_prompt}, |
83
|
|
|
{"role": "user", "content": prompt}, |
84
|
|
|
] |
85
|
|
|
try: |
86
|
|
|
completion = self.client.chat.completions.create( |
87
|
|
|
model=model, |
88
|
|
|
messages=messages, |
89
|
|
|
temperature=temperature, |
90
|
|
|
seed=seed, |
91
|
|
|
top_p=top_p, |
92
|
|
|
response_format=response_format, |
93
|
|
|
) |
94
|
|
|
except BadRequestError as err: |
95
|
|
|
print(err) |
96
|
|
|
return "{}" |
97
|
|
|
return completion.choices[0].message.content |
98
|
|
|
|
99
|
|
|
|
100
|
|
|
class LLMEnsembleBackend(BaseLLMBackend, ensemble.EnsembleBackend): |
101
|
|
|
"""Ensemble backend that combines results from multiple projects and scores them |
102
|
|
|
with a LLM""" |
103
|
|
|
|
104
|
|
|
name = "llm_ensemble" |
105
|
|
|
|
106
|
|
|
DEFAULT_PARAMETERS = { |
107
|
|
|
"max_prompt_tokens": 127000, |
108
|
|
|
"llm_weight": 0.7, |
109
|
|
|
"labels_language": "en", |
110
|
|
|
"sources_limit": 10, |
111
|
|
|
} |
112
|
|
|
|
113
|
|
|
def get_hp_optimizer(self, corpus: DocumentCorpus, metric: str) -> None: |
114
|
|
|
raise NotSupportedException( |
115
|
|
|
"Hyperparameter optimization for LLM ensemble backend is not possible." |
116
|
|
|
) |
117
|
|
|
|
118
|
|
|
def _suggest_batch( |
119
|
|
|
self, texts: list[str], params: dict[str, Any] |
120
|
|
|
) -> SuggestionBatch: |
121
|
|
|
sources = annif.util.parse_sources(params["sources"]) |
122
|
|
|
llm_weight = float(params["llm_weight"]) |
123
|
|
|
if llm_weight < 0.0 or llm_weight > 1.0: |
124
|
|
|
raise ValueError("llm_weight must be between 0.0 and 1.0") |
125
|
|
|
|
126
|
|
|
batch_by_source = self._suggest_with_sources(texts, sources) |
127
|
|
|
merged_source_batch = self._merge_source_batches( |
128
|
|
|
batch_by_source, sources, {"limit": params["sources_limit"]} |
129
|
|
|
) |
130
|
|
|
|
131
|
|
|
# Score the suggestion labels with the LLM |
132
|
|
|
llm_results_batch = self._llm_suggest_batch(texts, merged_source_batch, params) |
133
|
|
|
|
134
|
|
|
batches = [merged_source_batch, llm_results_batch] |
135
|
|
|
weights = [1.0 - llm_weight, llm_weight] |
136
|
|
|
return SuggestionBatch.from_averaged(batches, weights).filter( |
137
|
|
|
limit=int(params["limit"]) |
138
|
|
|
) |
139
|
|
|
|
140
|
|
|
def _llm_suggest_batch( |
141
|
|
|
self, |
142
|
|
|
texts: list[str], |
143
|
|
|
suggestion_batch: SuggestionBatch, |
144
|
|
|
params: dict[str, Any], |
145
|
|
|
) -> SuggestionBatch: |
146
|
|
|
|
147
|
|
|
model = params["model"] |
148
|
|
|
encoding = tiktoken.encoding_for_model(model.rsplit("-", 1)[0]) |
149
|
|
|
max_prompt_tokens = int(params["max_prompt_tokens"]) |
150
|
|
|
|
151
|
|
|
system_prompt = """ |
152
|
|
|
You will be given text and a list of keywords to describe it. Your task is |
153
|
|
|
to score the keywords with a value between 0.0 and 1.0. The score value |
154
|
|
|
should depend on how well the keyword represents the text: a perfect |
155
|
|
|
keyword should have score 1.0 and completely unrelated keyword score |
156
|
|
|
0.0. You must output JSON with keywords as field names and add their scores |
157
|
|
|
as field values. |
158
|
|
|
There must be the same number of objects in the JSON as there are lines in |
159
|
|
|
the intput keyword list; do not skip scoring any keywords. |
160
|
|
|
""" |
161
|
|
|
|
162
|
|
|
labels_batch = self._get_labels_batch(suggestion_batch) |
163
|
|
|
|
164
|
|
|
llm_batch_suggestions = [] |
165
|
|
|
for text, labels in zip(texts, labels_batch): |
166
|
|
|
prompt = "Here are the keywords:\n" + "\n".join(labels) + "\n" * 3 |
167
|
|
|
text = self._truncate_text(text, encoding, max_prompt_tokens) |
168
|
|
|
prompt += "Here is the text:\n" + text + "\n" |
169
|
|
|
|
170
|
|
|
response = self._call_llm( |
171
|
|
|
system_prompt, |
172
|
|
|
prompt, |
173
|
|
|
model, |
174
|
|
|
params, |
175
|
|
|
response_format={"type": "json_object"}, |
176
|
|
|
) |
177
|
|
|
try: |
178
|
|
|
llm_result = json.loads(response) |
179
|
|
|
except (TypeError, json.decoder.JSONDecodeError) as err: |
180
|
|
|
print(f"Error decoding JSON response from LLM: {response}") |
181
|
|
|
print(f"Error: {err}") |
182
|
|
|
llm_batch_suggestions.append( |
183
|
|
|
[SubjectSuggestion(subject_id=None, score=0.0) for _ in labels] |
184
|
|
|
) |
185
|
|
|
continue |
186
|
|
|
llm_batch_suggestions.append( |
187
|
|
|
[ |
188
|
|
|
( |
189
|
|
|
SubjectSuggestion( |
190
|
|
|
subject_id=self.project.subjects.by_label( |
191
|
|
|
llm_label, self.params["labels_language"] |
192
|
|
|
), |
193
|
|
|
score=score, |
194
|
|
|
) |
195
|
|
|
if llm_label in labels |
196
|
|
|
else SubjectSuggestion(subject_id=None, score=0.0) |
197
|
|
|
) |
198
|
|
|
for llm_label, score in llm_result.items() |
199
|
|
|
] |
200
|
|
|
) |
201
|
|
|
|
202
|
|
|
return SuggestionBatch.from_sequence( |
203
|
|
|
llm_batch_suggestions, |
204
|
|
|
self.project.subjects, |
205
|
|
|
) |
206
|
|
|
|
207
|
|
|
def _get_labels_batch(self, suggestion_batch: SuggestionBatch) -> list[list[str]]: |
208
|
|
|
return [ |
209
|
|
|
[ |
210
|
|
|
self.project.subjects[suggestion.subject_id].labels[ |
211
|
|
|
self.params["labels_language"] |
212
|
|
|
] |
213
|
|
|
for suggestion in suggestion_result |
214
|
|
|
] |
215
|
|
|
for suggestion_result in suggestion_batch |
216
|
|
|
] |
217
|
|
|
|