1
|
|
|
"""Annif backend using Yake keyword extraction""" |
2
|
|
|
# TODO Mention GPLv3 license also here? |
3
|
|
|
|
4
|
|
|
import yake |
5
|
|
|
import os.path |
6
|
|
|
import re |
7
|
|
|
from collections import defaultdict |
8
|
|
|
from rdflib.namespace import SKOS |
9
|
|
|
import annif.util |
10
|
|
|
from . import backend |
11
|
|
|
from annif.suggestion import SubjectSuggestion, ListSuggestionResult |
12
|
|
|
from annif.exception import ConfigurationException |
13
|
|
|
|
14
|
|
|
|
15
|
|
|
class YakeBackend(backend.AnnifBackend): |
16
|
|
|
"""Yake based backend for Annif""" |
17
|
|
|
name = "yake" |
18
|
|
|
needs_subject_index = False |
19
|
|
|
|
20
|
|
|
# defaults for uninitialized instances |
21
|
|
|
_index = None |
22
|
|
|
_graph = None |
23
|
|
|
INDEX_FILE = 'yake-index' |
24
|
|
|
|
25
|
|
|
DEFAULT_PARAMETERS = { |
26
|
|
|
'max_ngram_size': 4, |
27
|
|
|
'deduplication_threshold': 0.9, |
28
|
|
|
'deduplication_algo': 'levs', |
29
|
|
|
'window_size': 1, |
30
|
|
|
'num_keywords': 100, |
31
|
|
|
'features': None, |
32
|
|
|
'label_types': ['prefLabel', 'altLabel'], |
33
|
|
|
'remove_parentheses': False |
34
|
|
|
} |
35
|
|
|
|
36
|
|
|
def default_params(self): |
37
|
|
|
params = backend.AnnifBackend.DEFAULT_PARAMETERS.copy() |
38
|
|
|
params.update(self.DEFAULT_PARAMETERS) |
39
|
|
|
return params |
40
|
|
|
|
41
|
|
|
@property |
42
|
|
|
def is_trained(self): |
43
|
|
|
return True |
44
|
|
|
|
45
|
|
|
@property |
46
|
|
|
def label_types(self): |
47
|
|
|
if type(self.params['label_types']) == str: # Label types set by user |
48
|
|
|
label_types = [lt.strip() for lt |
49
|
|
|
in self.params['label_types'].split(',')] |
50
|
|
|
self._validate_label_types(label_types) |
51
|
|
|
else: |
52
|
|
|
label_types = self.params['label_types'] # The defaults |
53
|
|
|
return [getattr(SKOS, lt) for lt in label_types] |
54
|
|
|
|
55
|
|
|
def _validate_label_types(self, label_types): |
56
|
|
|
for lt in label_types: |
57
|
|
|
if lt not in ('prefLabel', 'altLabel', 'hiddenLabel'): |
58
|
|
|
raise ConfigurationException( |
59
|
|
|
f'invalid label type {lt}', backend_id=self.backend_id) |
60
|
|
|
|
61
|
|
|
def initialize(self): |
62
|
|
|
self._initialize_index() |
63
|
|
|
|
64
|
|
|
def _initialize_index(self): |
65
|
|
|
if self._index is None: |
66
|
|
|
path = os.path.join(self.datadir, self.INDEX_FILE) |
67
|
|
|
if os.path.exists(path): |
68
|
|
|
self._index = self._load_index(path) |
69
|
|
|
self.info( |
70
|
|
|
f'Loaded index from {path} with {len(self._index)} labels') |
71
|
|
|
else: |
72
|
|
|
self.info('Creating index') |
73
|
|
|
self._index = self._create_index() |
74
|
|
|
self._save_index(path) |
75
|
|
|
self.info(f'Created index with {len(self._index)} labels') |
76
|
|
|
|
77
|
|
|
def _save_index(self, path): |
78
|
|
|
with open(path, 'w', encoding='utf-8') as indexfile: |
79
|
|
|
for label, uris in self._index.items(): |
80
|
|
|
line = label + '\t' + ' '.join(uris) |
81
|
|
|
print(line, file=indexfile) |
82
|
|
|
|
83
|
|
|
def _load_index(self, path): |
84
|
|
|
index = dict() |
85
|
|
|
with open(path, 'r', encoding='utf-8') as indexfile: |
86
|
|
|
for line in indexfile: |
87
|
|
|
label, uris = line.strip().split('\t') |
88
|
|
|
index[label] = uris.split() |
89
|
|
|
return index |
90
|
|
|
|
91
|
|
|
def _create_index(self): |
92
|
|
|
index = defaultdict(set) |
93
|
|
|
for concept in self.project.vocab.skos_concepts: |
94
|
|
|
uri = str(concept) |
95
|
|
|
labels = self.project.vocab.get_skos_concept_labels( |
96
|
|
|
concept, self.label_types, self.params['language']) |
97
|
|
|
for label in labels: |
98
|
|
|
label = self._normalize_label(label) |
99
|
|
|
index[label].add(uri) |
100
|
|
|
index.pop('', None) # Remove possible empty string entry |
101
|
|
|
return dict(index) |
102
|
|
|
|
103
|
|
|
def _normalize_label(self, label): |
104
|
|
|
label = str(label) |
105
|
|
|
if annif.util.boolean(self.params['remove_parentheses']): |
106
|
|
|
label = re.sub(r' \(.*\)', '', label) |
107
|
|
|
lemmatized_label = self._lemmatize_phrase(label) |
108
|
|
|
return self._sort_phrase(lemmatized_label) |
109
|
|
|
|
110
|
|
|
def _lemmatize_phrase(self, phrase): |
111
|
|
|
normalized = [] |
112
|
|
|
for word in phrase.split(): |
113
|
|
|
normalized.append( |
114
|
|
|
self.project.analyzer.normalize_word(word).lower()) |
115
|
|
|
return ' '.join(normalized) |
116
|
|
|
|
117
|
|
|
def _sort_phrase(self, phrase): |
118
|
|
|
words = phrase.split() |
119
|
|
|
return ' '.join(sorted(words)) |
120
|
|
|
|
121
|
|
|
def _suggest(self, text, params): |
122
|
|
|
self.debug( |
123
|
|
|
f'Suggesting subjects for text "{text[:20]}..." (len={len(text)})') |
124
|
|
|
limit = int(params['limit']) |
125
|
|
|
|
126
|
|
|
self._kw_extractor = yake.KeywordExtractor( |
127
|
|
|
lan=params['language'], |
128
|
|
|
n=int(params['max_ngram_size']), |
129
|
|
|
dedupLim=float(params['deduplication_threshold']), |
130
|
|
|
dedupFunc=params['deduplication_algo'], |
131
|
|
|
windowsSize=int(params['window_size']), |
132
|
|
|
top=int(params['num_keywords']), |
133
|
|
|
features=self.params['features']) |
134
|
|
|
keyphrases = self._kw_extractor.extract_keywords(text) |
135
|
|
|
suggestions = self._keyphrases2suggestions(keyphrases) |
136
|
|
|
|
137
|
|
|
subject_suggestions = [SubjectSuggestion( |
138
|
|
|
uri=uri, |
139
|
|
|
label=None, |
140
|
|
|
notation=None, |
141
|
|
|
score=score) |
142
|
|
|
for uri, score in suggestions[:limit] if score > 0.0] |
143
|
|
|
return ListSuggestionResult.create_from_index(subject_suggestions, |
144
|
|
|
self.project.subjects) |
145
|
|
|
|
146
|
|
|
def _keyphrases2suggestions(self, keyphrases): |
147
|
|
|
suggestions = [] |
148
|
|
|
not_matched = [] |
149
|
|
|
for kp, score in keyphrases: |
150
|
|
|
uris = self._keyphrase2uris(kp) |
151
|
|
|
for uri in uris: |
152
|
|
|
suggestions.append( |
153
|
|
|
(uri, self._transform_score(score))) |
154
|
|
|
if not uris: |
155
|
|
|
not_matched.append((kp, self._transform_score(score))) |
156
|
|
|
# Remove duplicate uris, conflating the scores |
157
|
|
|
suggestions = self._combine_suggestions(suggestions) |
158
|
|
|
self.debug('Keyphrases not matched:\n' + '\t'.join( |
159
|
|
|
[kp[0] + ' ' + str(kp[1]) for kp |
160
|
|
|
in sorted(not_matched, reverse=True, key=lambda kp: kp[1])])) |
161
|
|
|
return suggestions |
162
|
|
|
|
163
|
|
|
def _keyphrase2uris(self, keyphrase): |
164
|
|
|
keyphrase = self._lemmatize_phrase(keyphrase) |
165
|
|
|
keyphrase = self._sort_phrase(keyphrase) |
166
|
|
|
return self._index.get(keyphrase, []) |
167
|
|
|
|
168
|
|
|
def _transform_score(self, score): |
169
|
|
|
score = max(score, 0) |
170
|
|
|
return 1.0 / (score + 1) |
171
|
|
|
|
172
|
|
|
def _combine_suggestions(self, suggestions): |
173
|
|
|
combined_suggestions = {} |
174
|
|
|
for uri, score in suggestions: |
175
|
|
|
if uri not in combined_suggestions: |
176
|
|
|
combined_suggestions[uri] = score |
177
|
|
|
else: |
178
|
|
|
old_score = combined_suggestions[uri] |
179
|
|
|
combined_suggestions[uri] = self._combine_scores( |
180
|
|
|
score, old_score) |
181
|
|
|
return list(combined_suggestions.items()) |
182
|
|
|
|
183
|
|
|
def _combine_scores(self, score1, score2): |
184
|
|
|
# The result is never smaller than the greater input |
185
|
|
|
score1 = score1/2 + 0.5 |
186
|
|
|
score2 = score2/2 + 0.5 |
187
|
|
|
confl = score1 * score2 / (score1 * score2 + (1-score1) * (1-score2)) |
188
|
|
|
return (confl-0.5) * 2 |
189
|
|
|
|