1
|
|
|
"""TODO""" |
2
|
|
|
|
3
|
|
|
from __future__ import annotations |
4
|
|
|
|
5
|
|
|
import json |
6
|
|
|
import os |
7
|
|
|
from typing import TYPE_CHECKING, Any |
8
|
|
|
|
9
|
|
|
from openai import AzureOpenAI, BadRequestError |
10
|
|
|
|
11
|
|
|
import annif.eval |
12
|
|
|
import annif.parallel |
13
|
|
|
import annif.util |
14
|
|
|
from annif.exception import NotSupportedException |
15
|
|
|
from annif.suggestion import SubjectSuggestion, SuggestionBatch |
16
|
|
|
|
17
|
|
|
from . import backend |
18
|
|
|
|
19
|
|
|
# from openai import AsyncAzureOpenAI |
20
|
|
|
|
21
|
|
|
|
22
|
|
|
if TYPE_CHECKING: |
23
|
|
|
from datetime import datetime |
24
|
|
|
|
25
|
|
|
from annif.corpus.document import DocumentCorpus |
26
|
|
|
|
27
|
|
|
|
28
|
|
|
class BaseLLMBackend(backend.AnnifBackend): |
29
|
|
|
# """Base class for TODO backends""" |
30
|
|
|
|
31
|
|
|
|
32
|
|
|
def _get_sources_attribute(self, attr: str) -> list[bool | None]: |
33
|
|
|
params = self._get_backend_params(None) |
34
|
|
|
sources = annif.util.parse_sources(params["sources"]) |
35
|
|
|
return [ |
36
|
|
|
getattr(self.project.registry.get_project(project_id), attr) |
37
|
|
|
for project_id, _ in sources |
38
|
|
|
] |
39
|
|
|
|
40
|
|
|
def initialize(self, parallel: bool = False) -> None: |
41
|
|
|
# initialize all the source projects |
42
|
|
|
params = self._get_backend_params(None) |
43
|
|
|
for project_id, _ in annif.util.parse_sources(params["sources"]): |
44
|
|
|
project = self.project.registry.get_project(project_id) |
45
|
|
|
project.initialize(parallel) |
46
|
|
|
|
47
|
|
|
# self.client = AsyncAzureOpenAI( |
48
|
|
|
self.client = AzureOpenAI( |
49
|
|
|
azure_endpoint=params["endpoint"], |
50
|
|
|
api_key=os.getenv("AZURE_OPENAI_KEY"), |
51
|
|
|
api_version="2024-02-15-preview", |
52
|
|
|
) |
53
|
|
|
|
54
|
|
|
def _suggest_with_sources( |
55
|
|
|
self, texts: list[str], sources: list[tuple[str, float]] |
56
|
|
|
) -> dict[str, SuggestionBatch]: |
57
|
|
|
return { |
58
|
|
|
project_id: self.project.registry.get_project(project_id).suggest(texts) |
59
|
|
|
for project_id, _ in sources |
60
|
|
|
} |
61
|
|
|
|
62
|
|
|
|
63
|
|
|
class LLMBackend(BaseLLMBackend): |
64
|
|
|
# """TODO backend that combines results from multiple projects""" |
65
|
|
|
|
66
|
|
|
name = "llm" |
67
|
|
|
|
68
|
|
|
system_prompt = """ |
69
|
|
|
You will be given text and a list of keywords to describe it. Your task is to |
70
|
|
|
score the keywords with a value between 0.0 and 1.0. The score value |
71
|
|
|
should depend on how well the keyword represents the text: a perfect |
72
|
|
|
keyword should have score 1.0 and completely unrelated keyword score |
73
|
|
|
0.0. You must output JSON with keywords as field names and add their scores |
74
|
|
|
as field values. |
75
|
|
|
There must be the same number of items in the JSON as there are in the |
76
|
|
|
intput keyword list. |
77
|
|
|
""" |
78
|
|
|
|
79
|
|
|
MAX_PROMPT_TOKENS = 15000 # Typically full answer is ~500 tokens |
80
|
|
|
|
81
|
|
|
@property |
82
|
|
|
def is_trained(self) -> bool: |
83
|
|
|
sources_trained = self._get_sources_attribute("is_trained") |
84
|
|
|
return all(sources_trained) |
85
|
|
|
|
86
|
|
|
@property |
87
|
|
|
def modification_time(self) -> datetime | None: |
88
|
|
|
mtimes = self._get_sources_attribute("modification_time") |
89
|
|
|
return max(filter(None, mtimes), default=None) |
90
|
|
|
|
91
|
|
|
def _train(self, corpus: DocumentCorpus, params: dict[str, Any], jobs: int = 0): |
92
|
|
|
raise NotSupportedException("Training LLM backend is not possible.") |
93
|
|
|
|
94
|
|
|
def _suggest_batch( |
95
|
|
|
self, texts: list[str], params: dict[str, Any] |
96
|
|
|
) -> SuggestionBatch: |
97
|
|
|
sources = annif.util.parse_sources(params["sources"]) |
98
|
|
|
model = params["model"] |
99
|
|
|
llm_scores_weight = float(params["llm_scores_weight"]) |
100
|
|
|
# llm_probs_weight = float(params["llm_probs_weight"]) |
101
|
|
|
encoding = tiktoken.encoding_for_model(model.rsplit("-", 1)[0]) |
102
|
|
|
|
103
|
|
|
batch_results = [] |
104
|
|
|
base_suggestion_batch = self._suggest_with_sources(texts, sources)[ |
105
|
|
|
sources[0][0] |
106
|
|
|
] |
107
|
|
|
|
108
|
|
|
for text, base_suggestions in zip(texts, base_suggestion_batch): |
109
|
|
|
text = self._truncate_text(text) |
110
|
|
|
prompt = "Here is the text:\n" + text[:chars_max] + "\n" |
111
|
|
|
|
112
|
|
|
base_labels = [ |
113
|
|
|
self.project.subjects[s.subject_id].labels["en"] |
114
|
|
|
for s in base_suggestions |
115
|
|
|
] |
116
|
|
|
prompt += "And here are the keywords:\n" + "\n".join(base_labels) |
117
|
|
|
answer, probabilities = self._call_llm(prompt, model) |
118
|
|
|
print(answer) |
119
|
|
|
print(probabilities) |
120
|
|
|
try: |
121
|
|
|
llm_result = json.loads(answer) |
122
|
|
|
except (TypeError, json.decoder.JSONDecodeError) as err: |
123
|
|
|
print(err) |
124
|
|
|
llm_result = dict() |
125
|
|
|
results = self._get_llm_suggestions( |
126
|
|
|
llm_result, |
127
|
|
|
base_labels, |
128
|
|
|
base_suggestions, |
129
|
|
|
llm_scores_weight, |
130
|
|
|
# probabilities, |
131
|
|
|
# llm_probs_weight, |
132
|
|
|
) |
133
|
|
|
batch_results.append(results) |
134
|
|
|
return SuggestionBatch.from_sequence(batch_results, self.project.subjects) |
135
|
|
|
|
136
|
|
|
def _truncate_text(text): |
137
|
|
|
"""truncate text so it contains at most MAX_PROMPT_TOKENS according to the |
138
|
|
|
OpenAI tokenizer""" |
139
|
|
|
tokens = encoding.encode(text) |
140
|
|
|
return encoding.decode(tokens[:MAX_PROMPT_TOKENS]) |
141
|
|
|
|
142
|
|
|
def _get_llm_suggestions( |
143
|
|
|
self, |
144
|
|
|
llm_result, |
145
|
|
|
base_labels, |
146
|
|
|
base_suggestions, |
147
|
|
|
llm_scores_weight, |
148
|
|
|
# probabilities, |
149
|
|
|
# llm_probs_weight, |
150
|
|
|
): |
151
|
|
|
suggestions = [] |
152
|
|
|
# print(f"LLM result: {llm_result}") |
153
|
|
|
for blabel, bsuggestion in zip(base_labels, base_suggestions): |
154
|
|
|
# score = llm_result.get(blabel, 0) |
155
|
|
|
try: |
156
|
|
|
score = llm_result[blabel] |
157
|
|
|
# probability = probabilities[blabel] |
158
|
|
|
except KeyError: |
159
|
|
|
print(f"Base label {blabel} not found in LLM labels") |
160
|
|
|
score = bsuggestion.score # use only base suggestion score |
161
|
|
|
# probability = 0.0 |
162
|
|
|
subj_id = bsuggestion.subject_id |
163
|
|
|
|
164
|
|
|
base_scores_weight = 1.0 - llm_scores_weight |
165
|
|
|
mean_score = ( |
166
|
|
|
base_scores_weight * bsuggestion.score |
167
|
|
|
+ llm_scores_weight * score # * probability * llm_probs_weight |
168
|
|
|
) / ( |
169
|
|
|
base_scores_weight + llm_scores_weight # * probability * llm_probs_weight |
170
|
|
|
) # weighted mean of LLM and base scores! |
171
|
|
|
suggestions.append(SubjectSuggestion(subject_id=subj_id, score=mean_score)) |
172
|
|
|
return suggestions |
173
|
|
|
|
174
|
|
|
# async def _call_llm(self, prompt: str, model: str): |
175
|
|
|
def _call_llm(self, prompt: str, model: str): |
176
|
|
|
messages = [ |
177
|
|
|
{"role": "system", "content": self.system_prompt}, |
178
|
|
|
{"role": "user", "content": prompt}, |
179
|
|
|
] |
180
|
|
|
try: |
181
|
|
|
# completion = await client.chat.completions.create( |
182
|
|
|
completion = self.client.chat.completions.create( |
183
|
|
|
model=model, |
184
|
|
|
messages=messages, |
185
|
|
|
temperature=0.0, |
186
|
|
|
seed=0, |
187
|
|
|
max_tokens=1800, |
188
|
|
|
top_p=0.95, |
189
|
|
|
frequency_penalty=0, |
190
|
|
|
presence_penalty=0, |
191
|
|
|
stop=None, |
192
|
|
|
response_format={"type": "json_object"}, |
193
|
|
|
# logprobs=True, |
194
|
|
|
) |
195
|
|
|
# return completion.choices[0].message.content |
196
|
|
|
|
197
|
|
|
answer = completion.choices[0].message.content |
198
|
|
|
# lines = self._get_logprobs(completion.choices[0].logprobs.content) |
199
|
|
|
# probs = self._get_probs(lines) |
200
|
|
|
# return answer, probs |
201
|
|
|
return answer, dict() |
202
|
|
|
except BadRequestError as err: # openai.RateLimitError |
203
|
|
|
print(err) |
204
|
|
|
return "{}", dict() |
205
|
|
|
|
206
|
|
|
def _get_logprobs(self, content): |
207
|
|
|
import numpy as np |
208
|
|
|
|
209
|
|
|
lines = [] |
210
|
|
|
joint_logprob = 0.0 |
211
|
|
|
line = "" |
212
|
|
|
line_joint_logprob = 0.0 |
213
|
|
|
for token in content: |
214
|
|
|
# print("Token:", token.token) |
215
|
|
|
# print("Log prob:", token.logprob) |
216
|
|
|
# print("Linear prob:", np.round(np.exp(token.logprob) * 100, 2), "%") |
217
|
|
|
# print("Bytes:", token.bytes, "\n") |
218
|
|
|
# aggregated_bytes += token.bytes |
219
|
|
|
joint_logprob += token.logprob |
220
|
|
|
|
221
|
|
|
line += token.token |
222
|
|
|
line_joint_logprob += token.logprob |
223
|
|
|
if "\n" in token.token: |
224
|
|
|
# print("Line is: "+ line) |
225
|
|
|
line_prob = np.exp(line_joint_logprob) |
226
|
|
|
# print("Line's linear prob:", np.round(line_prob * 100, 2), "%") |
227
|
|
|
|
228
|
|
|
lines.append((line, line_prob)) |
229
|
|
|
line = "" |
230
|
|
|
line_joint_logprob = 0.0 |
231
|
|
|
# print() |
232
|
|
|
# print() |
233
|
|
|
# print("Joint log prob:", joint_logprob) |
234
|
|
|
# print("Joint prob:", np.round(np.exp(joint_logprob) * 100, 2), "%") |
235
|
|
|
return lines |
236
|
|
|
|
237
|
|
|
# def _get_probs(self, lines): |
238
|
|
|
# probs = dict() |
239
|
|
|
# for line, prob in lines: |
240
|
|
|
# try: |
241
|
|
|
# label = line.split('"')[1] |
242
|
|
|
# except IndexError: |
243
|
|
|
# print("Failed parsing line: " + line) |
244
|
|
|
# continue # Not a line with label |
245
|
|
|
# # probs[label] = 1.0 |
246
|
|
|
# probs[label] = prob |
247
|
|
|
return probs |
248
|
|
|
|