1
|
|
|
"""Representing suggested subjects.""" |
2
|
|
|
|
3
|
|
|
from __future__ import annotations |
4
|
|
|
|
5
|
|
|
import collections |
6
|
|
|
import itertools |
7
|
|
|
from typing import TYPE_CHECKING |
8
|
|
|
|
9
|
|
|
import numpy as np |
10
|
|
|
from scipy.sparse import csr_array |
11
|
|
|
|
12
|
|
|
if TYPE_CHECKING: |
13
|
|
|
from collections.abc import Iterable, Iterator, Sequence |
14
|
|
|
|
15
|
|
|
from annif.corpus.subject import SubjectIndex |
16
|
|
|
|
17
|
|
|
SubjectSuggestion = collections.namedtuple("SubjectSuggestion", "subject_id score") |
18
|
|
|
|
19
|
|
|
|
20
|
|
|
def vector_to_suggestions(vector: np.ndarray, limit: int) -> Iterator: |
21
|
|
|
limit = min(len(vector), limit) |
22
|
|
|
topk_idx = np.argpartition(vector, -limit)[-limit:] |
23
|
|
|
return ( |
24
|
|
|
SubjectSuggestion(subject_id=idx, score=float(vector[idx])) for idx in topk_idx |
25
|
|
|
) |
26
|
|
|
|
27
|
|
|
|
28
|
|
|
def filter_suggestion( |
29
|
|
|
preds: csr_array, |
30
|
|
|
limit: int | None = None, |
31
|
|
|
threshold: float = 0.0, |
32
|
|
|
) -> csr_array: |
33
|
|
|
"""filter a 2D sparse suggestion array (csr_array), retaining only the |
34
|
|
|
top K suggestions with a score above or equal to the threshold for each |
35
|
|
|
individual prediction; the rest will be left as zeros""" |
36
|
|
|
|
37
|
|
|
if limit == 0: |
38
|
|
|
return csr_array(preds.shape, dtype=np.float32) # empty |
39
|
|
|
|
40
|
|
|
data, rows, cols = [], [], [] |
41
|
|
|
for row in range(preds.shape[0]): |
42
|
|
|
arow = preds[[row]] |
43
|
|
|
if limit is not None and limit < len(arow.data): |
44
|
|
|
topk_idx = arow.data.argpartition(-limit)[-limit:] |
45
|
|
|
else: |
46
|
|
|
topk_idx = range(len(arow.data)) |
47
|
|
|
for idx in topk_idx: |
48
|
|
|
if arow.data[idx] >= threshold: |
49
|
|
|
data.append(arow.data[idx]) |
50
|
|
|
rows.append(row) |
51
|
|
|
cols.append(arow.indices[idx]) |
52
|
|
|
return csr_array((data, (rows, cols)), shape=preds.shape, dtype=np.float32) |
53
|
|
|
|
54
|
|
|
|
55
|
|
|
class SuggestionResult: |
56
|
|
|
"""Suggestions for a single document, backed by a row of a sparse array.""" |
57
|
|
|
|
58
|
|
|
def __init__(self, array: csr_array, idx: int) -> None: |
59
|
|
|
self._array = array |
60
|
|
|
self._idx = idx |
61
|
|
|
|
62
|
|
|
def __iter__(self): |
63
|
|
|
_, cols = self._array[[self._idx], :].nonzero() |
64
|
|
|
suggestions = [ |
65
|
|
|
SubjectSuggestion(subject_id=col, score=float(self._array[self._idx, col])) |
66
|
|
|
for col in cols |
67
|
|
|
] |
68
|
|
|
return iter( |
69
|
|
|
sorted(suggestions, key=lambda suggestion: suggestion.score, reverse=True) |
70
|
|
|
) |
71
|
|
|
|
72
|
|
|
def as_vector(self) -> np.ndarray: |
73
|
|
|
return self._array[[self._idx], :].toarray()[0] |
74
|
|
|
|
75
|
|
|
def __len__(self) -> int: |
76
|
|
|
_, cols = self._array[[self._idx], :].nonzero() |
77
|
|
|
return len(cols) |
78
|
|
|
|
79
|
|
|
|
80
|
|
|
class SuggestionBatch: |
81
|
|
|
"""Subject suggestions for a batch of documents.""" |
82
|
|
|
|
83
|
|
|
def __init__(self, array: csr_array) -> None: |
84
|
|
|
"""Create a new SuggestionBatch from a csr_array""" |
85
|
|
|
assert isinstance(array, csr_array) |
86
|
|
|
self.array = array |
87
|
|
|
|
88
|
|
|
@classmethod |
89
|
|
|
def from_sequence( |
90
|
|
|
cls, |
91
|
|
|
suggestion_results: Sequence[Iterable[SubjectSuggestion]], |
92
|
|
|
subject_index: SubjectIndex, |
93
|
|
|
limit: int | None = None, |
94
|
|
|
) -> SuggestionBatch: |
95
|
|
|
"""Create a new SuggestionBatch from a sequence where each item is |
96
|
|
|
a sequence of SubjectSuggestion objects.""" |
97
|
|
|
|
98
|
|
|
data, rows, cols = [], [], [] |
99
|
|
|
for idx, result in enumerate(suggestion_results): |
100
|
|
|
for suggestion in itertools.islice(result, limit): |
101
|
|
|
if suggestion.score <= 0.0: |
102
|
|
|
continue |
103
|
|
|
try: # check for deprecated subjects |
104
|
|
|
_ = subject_index[suggestion.subject_id] |
105
|
|
|
except IndexError: |
106
|
|
|
continue |
107
|
|
|
data.append(min(suggestion.score, 1.0)) |
108
|
|
|
rows.append(idx) |
109
|
|
|
cols.append(suggestion.subject_id) |
110
|
|
|
return cls( |
111
|
|
|
csr_array( |
112
|
|
|
(data, (rows, cols)), |
113
|
|
|
shape=(len(suggestion_results), len(subject_index)), |
114
|
|
|
dtype=np.float32, |
115
|
|
|
) |
116
|
|
|
) |
117
|
|
|
|
118
|
|
|
@classmethod |
119
|
|
|
def from_averaged( |
120
|
|
|
cls, batches: list[SuggestionBatch], weights: list[float] |
121
|
|
|
) -> SuggestionBatch: |
122
|
|
|
"""Create a new SuggestionBatch where the subject scores are the |
123
|
|
|
weighted average of scores in several SuggestionBatches""" |
124
|
|
|
|
125
|
|
|
avg_array = sum( |
126
|
|
|
[batch.array * weight for batch, weight in zip(batches, weights)] |
127
|
|
|
) / sum(weights) |
128
|
|
|
return SuggestionBatch(avg_array) |
129
|
|
|
|
130
|
|
|
def filter( |
131
|
|
|
self, limit: int | None = None, threshold: float = 0.0 |
132
|
|
|
) -> SuggestionBatch: |
133
|
|
|
"""Return a subset of the hits, filtered by the given limit and |
134
|
|
|
score threshold, as another SuggestionBatch object.""" |
135
|
|
|
|
136
|
|
|
return SuggestionBatch(filter_suggestion(self.array, limit, threshold)) |
137
|
|
|
|
138
|
|
|
def __getitem__(self, idx: int) -> SuggestionResult: |
139
|
|
|
if idx < 0 or idx >= len(self): |
140
|
|
|
raise IndexError |
141
|
|
|
return SuggestionResult(self.array, idx) |
142
|
|
|
|
143
|
|
|
def __len__(self) -> int: |
144
|
|
|
return self.array.shape[0] |
145
|
|
|
|
146
|
|
|
|
147
|
|
|
class SuggestionResults: |
148
|
|
|
"""Subject suggestions for a potentially very large number of documents.""" |
149
|
|
|
|
150
|
|
|
def __init__(self, batches: Iterable[SuggestionBatch]) -> None: |
151
|
|
|
"""Initialize a new SuggestionResults from an iterable that provides |
152
|
|
|
SuggestionBatch objects.""" |
153
|
|
|
|
154
|
|
|
self.batches = batches |
155
|
|
|
|
156
|
|
|
def filter( |
157
|
|
|
self, limit: int | None = None, threshold: float = 0.0 |
158
|
|
|
) -> SuggestionResults: |
159
|
|
|
"""Return a view of these suggestions, filtered by the given limit |
160
|
|
|
and/or threshold, as another SuggestionResults object.""" |
161
|
|
|
|
162
|
|
|
return SuggestionResults( |
163
|
|
|
(batch.filter(limit, threshold) for batch in self.batches) |
164
|
|
|
) |
165
|
|
|
|
166
|
|
|
def __iter__(self) -> itertools.chain: |
167
|
|
|
return iter(itertools.chain.from_iterable(self.batches)) |
168
|
|
|
|