1
|
|
|
"""Backend that returns most similar subjects based on similarity in sparse |
2
|
|
|
TF-IDF normalized bag-of-words vector space""" |
3
|
|
|
|
4
|
|
|
from __future__ import annotations |
5
|
|
|
|
6
|
|
|
import os.path |
7
|
|
|
import tempfile |
8
|
|
|
from typing import TYPE_CHECKING, Any |
9
|
|
|
|
10
|
|
|
import gensim.similarities |
11
|
|
|
from gensim.matutils import Sparse2Corpus |
12
|
|
|
|
13
|
|
|
import annif.util |
14
|
|
|
from annif.exception import NotInitializedException, NotSupportedException |
15
|
|
|
from annif.suggestion import vector_to_suggestions |
16
|
|
|
|
17
|
|
|
from . import backend, mixins |
18
|
|
|
|
19
|
|
|
if TYPE_CHECKING: |
20
|
|
|
from collections.abc import Iterator |
21
|
|
|
|
22
|
|
|
from scipy.sparse._csr import csr_matrix |
23
|
|
|
|
24
|
|
|
from annif.corpus import Document, DocumentCorpus |
25
|
|
|
|
26
|
|
|
|
27
|
|
|
class SubjectBuffer: |
28
|
|
|
"""A file-backed buffer to store and retrieve subject text.""" |
29
|
|
|
|
30
|
|
|
BUFFER_SIZE = 100 |
31
|
|
|
|
32
|
|
|
def __init__(self, tempdir: str, subject_id: int) -> None: |
33
|
|
|
filename = "{:08d}.txt".format(subject_id) |
34
|
|
|
self._path = os.path.join(tempdir, filename) |
35
|
|
|
self._buffer = [] |
36
|
|
|
self._created = False |
37
|
|
|
|
38
|
|
|
def flush(self) -> None: |
39
|
|
|
if self._created: |
40
|
|
|
mode = "a" |
41
|
|
|
else: |
42
|
|
|
mode = "w" |
43
|
|
|
|
44
|
|
|
with open(self._path, mode, encoding="utf-8") as subjfile: |
45
|
|
|
for text in self._buffer: |
46
|
|
|
print(text, file=subjfile) |
47
|
|
|
|
48
|
|
|
self._buffer = [] |
49
|
|
|
self._created = True |
50
|
|
|
|
51
|
|
|
def write(self, text: str) -> None: |
52
|
|
|
self._buffer.append(text) |
53
|
|
|
if len(self._buffer) >= self.BUFFER_SIZE: |
54
|
|
|
self.flush() |
55
|
|
|
|
56
|
|
|
def read(self) -> str: |
57
|
|
|
if not self._created: |
58
|
|
|
# file was never created - we can simply return the buffer content |
59
|
|
|
return "\n".join(self._buffer) |
60
|
|
|
else: |
61
|
|
|
with open(self._path, "r", encoding="utf-8") as subjfile: |
62
|
|
|
return subjfile.read() + "\n" + "\n".join(self._buffer) |
63
|
|
|
|
64
|
|
|
|
65
|
|
|
class TFIDFBackend(mixins.TfidfVectorizerMixin, backend.AnnifBackend): |
66
|
|
|
"""TF-IDF vector space similarity based backend for Annif""" |
67
|
|
|
|
68
|
|
|
name = "tfidf" |
69
|
|
|
|
70
|
|
|
# defaults for uninitialized instances |
71
|
|
|
_index = None |
72
|
|
|
|
73
|
|
|
INDEX_FILE = "tfidf-index" |
74
|
|
|
|
75
|
|
|
def _generate_subjects_from_documents( |
76
|
|
|
self, corpus: DocumentCorpus |
77
|
|
|
) -> Iterator[str]: |
78
|
|
|
with tempfile.TemporaryDirectory() as tempdir: |
79
|
|
|
subject_buffer = {} |
80
|
|
|
for subject_id in range(len(self.project.subjects)): |
81
|
|
|
subject_buffer[subject_id] = SubjectBuffer(tempdir, subject_id) |
82
|
|
|
|
83
|
|
|
for doc in corpus.documents: |
84
|
|
|
tokens = self.project.analyzer.tokenize_words(doc.text) |
85
|
|
|
for subject_id in doc.subject_set: |
86
|
|
|
subject_buffer[subject_id].write(" ".join(tokens)) |
87
|
|
|
|
88
|
|
|
for sid in range(len(self.project.subjects)): |
89
|
|
|
yield subject_buffer[sid].read() |
90
|
|
|
|
91
|
|
|
def _initialize_index(self) -> None: |
92
|
|
|
if self._index is None: |
93
|
|
|
path = os.path.join(self.datadir, self.INDEX_FILE) |
94
|
|
|
self.debug("loading similarity index from {}".format(path)) |
95
|
|
|
if os.path.exists(path): |
96
|
|
|
self._index = gensim.similarities.SparseMatrixSimilarity.load(path) |
97
|
|
|
else: |
98
|
|
|
raise NotInitializedException( |
99
|
|
|
"similarity index {} not found".format(path), |
100
|
|
|
backend_id=self.backend_id, |
101
|
|
|
) |
102
|
|
|
|
103
|
|
|
def initialize(self, parallel: bool = False) -> None: |
104
|
|
|
self.initialize_vectorizer() |
105
|
|
|
self._initialize_index() |
106
|
|
|
|
107
|
|
|
def _create_index(self, veccorpus: csr_matrix) -> None: |
108
|
|
|
self.info("creating similarity index") |
109
|
|
|
gscorpus = Sparse2Corpus(veccorpus, documents_columns=False) |
110
|
|
|
self._index = gensim.similarities.SparseMatrixSimilarity( |
111
|
|
|
gscorpus, num_features=len(self.vectorizer.vocabulary_) |
112
|
|
|
) |
113
|
|
|
annif.util.atomic_save(self._index, self.datadir, self.INDEX_FILE) |
114
|
|
|
|
115
|
|
|
def _train( |
116
|
|
|
self, |
117
|
|
|
corpus: DocumentCorpus, |
118
|
|
|
params: dict[str, Any], |
119
|
|
|
jobs: int = 0, |
120
|
|
|
) -> None: |
121
|
|
|
if corpus == "cached": |
122
|
|
|
raise NotSupportedException( |
123
|
|
|
"Training tfidf project from cached data not supported." |
124
|
|
|
) |
125
|
|
|
if corpus.is_empty(): |
126
|
|
|
raise NotSupportedException("Cannot train tfidf project with no documents") |
127
|
|
|
self.info("transforming subject corpus") |
128
|
|
|
subjects = self._generate_subjects_from_documents(corpus) |
129
|
|
|
veccorpus = self.create_vectorizer(subjects) |
130
|
|
|
self._create_index(veccorpus) |
131
|
|
|
|
132
|
|
|
def _suggest(self, doc: Document, params: dict[str, Any]) -> Iterator: |
133
|
|
|
self.debug( |
134
|
|
|
'Suggesting subjects for text "{}..." (len={})'.format( |
135
|
|
|
doc.text[:20], len(doc.text) |
136
|
|
|
) |
137
|
|
|
) |
138
|
|
|
tokens = self.project.analyzer.tokenize_words(doc.text) |
139
|
|
|
vectors = self.vectorizer.transform([" ".join(tokens)]) |
140
|
|
|
return vector_to_suggestions(self._index[vectors[0]], int(params["limit"])) |
141
|
|
|
|