1
|
|
|
"""Project management functionality for Annif""" |
2
|
|
|
|
3
|
|
|
from __future__ import annotations |
4
|
|
|
|
5
|
|
|
import enum |
6
|
|
|
import os.path |
7
|
|
|
import re |
8
|
|
|
from shutil import rmtree |
9
|
|
|
from typing import TYPE_CHECKING |
10
|
|
|
|
11
|
|
|
import annif |
12
|
|
|
import annif.analyzer |
13
|
|
|
import annif.backend |
14
|
|
|
import annif.corpus |
15
|
|
|
import annif.transform |
16
|
|
|
from annif.datadir import DatadirMixin |
17
|
|
|
from annif.exception import ( |
18
|
|
|
AnnifException, |
19
|
|
|
ConfigurationException, |
20
|
|
|
NotInitializedException, |
21
|
|
|
NotSupportedException, |
22
|
|
|
) |
23
|
|
|
from annif.util import parse_args |
24
|
|
|
from annif.vocab import SubjectIndexFilter |
25
|
|
|
|
26
|
|
|
if TYPE_CHECKING: |
27
|
|
|
from collections import defaultdict |
28
|
|
|
from configparser import SectionProxy |
29
|
|
|
from datetime import datetime |
30
|
|
|
|
31
|
|
|
from click.utils import LazyFile |
32
|
|
|
|
33
|
|
|
from annif.analyzer import Analyzer |
34
|
|
|
from annif.backend import AnnifBackend |
35
|
|
|
from annif.backend.hyperopt import HPRecommendation |
36
|
|
|
from annif.corpus.document import DocumentCorpus |
37
|
|
|
from annif.corpus.subject import SubjectIndex |
38
|
|
|
from annif.registry import AnnifRegistry |
39
|
|
|
from annif.transform.transform import TransformChain |
40
|
|
|
from annif.vocab import AnnifVocabulary |
41
|
|
|
|
42
|
|
|
logger = annif.logger |
43
|
|
|
|
44
|
|
|
|
45
|
|
|
class Access(enum.IntEnum): |
46
|
|
|
"""Enumeration of access levels for projects""" |
47
|
|
|
|
48
|
|
|
private = 1 |
49
|
|
|
hidden = 2 |
50
|
|
|
public = 3 |
51
|
|
|
|
52
|
|
|
|
53
|
|
|
class AnnifProject(DatadirMixin): |
54
|
|
|
"""Class representing the configuration of a single Annif project.""" |
55
|
|
|
|
56
|
|
|
# defaults for uninitialized instances |
57
|
|
|
_transform = None |
58
|
|
|
_analyzer = None |
59
|
|
|
_backend = None |
60
|
|
|
_vocab = None |
61
|
|
|
_vocab_lang = None |
62
|
|
|
_vocab_kwargs = {} |
63
|
|
|
_subject_index = None |
64
|
|
|
initialized = False |
65
|
|
|
|
66
|
|
|
# default values for configuration settings |
67
|
|
|
DEFAULT_ACCESS = "public" |
68
|
|
|
|
69
|
|
|
def __init__( |
70
|
|
|
self, |
71
|
|
|
project_id: str, |
72
|
|
|
config: dict[str, str] | SectionProxy, |
73
|
|
|
datadir: str, |
74
|
|
|
registry: AnnifRegistry, |
75
|
|
|
) -> None: |
76
|
|
|
DatadirMixin.__init__(self, datadir, "projects", project_id) |
77
|
|
|
self.project_id = project_id |
78
|
|
|
self.name = config.get("name", project_id) |
79
|
|
|
self.language = config["language"] |
80
|
|
|
self.analyzer_spec = config.get("analyzer", None) |
81
|
|
|
self.transform_spec = config.get("transform", "pass") |
82
|
|
|
self.vocab_spec = config.get("vocab", None) |
83
|
|
|
self.config = config |
84
|
|
|
self._base_datadir = datadir |
85
|
|
|
self.registry = registry |
86
|
|
|
self._init_access() |
87
|
|
|
|
88
|
|
|
def _init_access(self) -> None: |
89
|
|
|
access = self.config.get("access", self.DEFAULT_ACCESS) |
90
|
|
|
try: |
91
|
|
|
self.access = getattr(Access, access) |
92
|
|
|
except AttributeError: |
93
|
|
|
raise ConfigurationException( |
94
|
|
|
"'{}' is not a valid access setting".format(access), |
95
|
|
|
project_id=self.project_id, |
96
|
|
|
) |
97
|
|
|
|
98
|
|
|
def _initialize_analyzer(self) -> None: |
99
|
|
|
if not self.analyzer_spec: |
100
|
|
|
return # not configured, so assume it's not needed |
101
|
|
|
analyzer = self.analyzer |
102
|
|
|
logger.debug( |
103
|
|
|
"Project '%s': initialized analyzer: %s", self.project_id, str(analyzer) |
104
|
|
|
) |
105
|
|
|
|
106
|
|
|
def _initialize_subjects(self) -> None: |
107
|
|
|
try: |
108
|
|
|
subjects = self.subjects |
109
|
|
|
logger.debug( |
110
|
|
|
"Project '%s': initialized subjects: %s", self.project_id, str(subjects) |
111
|
|
|
) |
112
|
|
|
except AnnifException as err: |
113
|
|
|
logger.warning(err.format_message()) |
114
|
|
|
|
115
|
|
|
def _initialize_backend(self, parallel: bool) -> None: |
116
|
|
|
logger.debug("Project '%s': initializing backend", self.project_id) |
117
|
|
|
try: |
118
|
|
|
if not self.backend: |
119
|
|
|
logger.debug("Cannot initialize backend: does not exist") |
120
|
|
|
return |
121
|
|
|
self.backend.initialize(parallel) |
122
|
|
|
except AnnifException as err: |
123
|
|
|
logger.warning(err.format_message()) |
124
|
|
|
|
125
|
|
|
def initialize(self, parallel: bool = False) -> None: |
126
|
|
|
"""Initialize this project and its backend so that they are ready to |
127
|
|
|
be used. If parallel is True, expect that the project will be used |
128
|
|
|
for parallel processing.""" |
129
|
|
|
|
130
|
|
|
if self.initialized: |
131
|
|
|
return |
132
|
|
|
|
133
|
|
|
logger.debug("Initializing project '%s'", self.project_id) |
134
|
|
|
|
135
|
|
|
self._initialize_analyzer() |
136
|
|
|
self._initialize_subjects() |
137
|
|
|
self._initialize_backend(parallel) |
138
|
|
|
|
139
|
|
|
self.initialized = True |
140
|
|
|
|
141
|
|
|
def _suggest_with_backend( |
142
|
|
|
self, |
143
|
|
|
texts: list[str], |
144
|
|
|
backend_params: defaultdict[str, dict] | None, |
145
|
|
|
) -> annif.suggestion.SuggestionBatch: |
146
|
|
|
if backend_params is None: |
147
|
|
|
backend_params = {} |
148
|
|
|
beparams = backend_params.get(self.backend.backend_id, {}) |
149
|
|
|
return self.backend.suggest(texts, beparams) |
150
|
|
|
|
151
|
|
|
@property |
152
|
|
|
def analyzer(self) -> Analyzer: |
153
|
|
|
if self._analyzer is None: |
154
|
|
|
if self.analyzer_spec: |
155
|
|
|
self._analyzer = annif.analyzer.get_analyzer(self.analyzer_spec) |
156
|
|
|
else: |
157
|
|
|
raise ConfigurationException( |
158
|
|
|
"analyzer setting is missing", project_id=self.project_id |
159
|
|
|
) |
160
|
|
|
return self._analyzer |
161
|
|
|
|
162
|
|
|
@property |
163
|
|
|
def transform(self) -> TransformChain: |
164
|
|
|
if self._transform is None: |
165
|
|
|
self._transform = annif.transform.get_transform( |
166
|
|
|
self.transform_spec, project=self |
167
|
|
|
) |
168
|
|
|
return self._transform |
169
|
|
|
|
170
|
|
|
@property |
171
|
|
|
def backend(self) -> AnnifBackend | None: |
172
|
|
|
if self._backend is None: |
173
|
|
|
if "backend" not in self.config: |
174
|
|
|
raise ConfigurationException( |
175
|
|
|
"backend setting is missing", project_id=self.project_id |
176
|
|
|
) |
177
|
|
|
backend_id = self.config["backend"] |
178
|
|
|
try: |
179
|
|
|
backend_class = annif.backend.get_backend(backend_id) |
180
|
|
|
self._backend = backend_class( |
181
|
|
|
backend_id, config_params=self.config, project=self |
182
|
|
|
) |
183
|
|
|
except ValueError: |
184
|
|
|
logger.warning( |
185
|
|
|
"Could not create backend %s, " |
186
|
|
|
"make sure you've installed optional dependencies", |
187
|
|
|
backend_id, |
188
|
|
|
) |
189
|
|
|
return self._backend |
190
|
|
|
|
191
|
|
|
def _initialize_vocab(self) -> None: |
192
|
|
|
if self.vocab_spec is None: |
193
|
|
|
raise ConfigurationException( |
194
|
|
|
"vocab setting is missing", project_id=self.project_id |
195
|
|
|
) |
196
|
|
|
|
197
|
|
|
match = re.match(r"([\w-]+)(\((.*)\))?$", self.vocab_spec) |
198
|
|
|
if match is None: |
199
|
|
|
raise ValueError(f"Invalid vocabulary specification: {self.vocab_spec}") |
200
|
|
|
vocab_id = match.group(1) |
201
|
|
|
posargs, self._vocab_kwargs = parse_args(match.group(3)) |
202
|
|
|
self._vocab_lang = posargs[0] if posargs else self.language |
203
|
|
|
self._vocab = self.registry.get_vocab(vocab_id) |
204
|
|
|
|
205
|
|
|
@property |
206
|
|
|
def vocab(self) -> AnnifVocabulary: |
207
|
|
|
if self._vocab is None: |
208
|
|
|
self._initialize_vocab() |
209
|
|
|
return self._vocab |
210
|
|
|
|
211
|
|
|
@property |
212
|
|
|
def vocab_lang(self) -> str: |
213
|
|
|
if self._vocab_lang is None: |
214
|
|
|
self._initialize_vocab() |
215
|
|
|
return self._vocab_lang |
216
|
|
|
|
217
|
|
|
@property |
218
|
|
|
def subjects(self) -> SubjectIndex: |
219
|
|
|
if self._subject_index is None: |
220
|
|
|
self._subject_index = self.vocab.subjects |
221
|
|
|
if "exclude" in self._vocab_kwargs: |
222
|
|
|
exclude_list = self._vocab_kwargs["exclude"].split("|") |
223
|
|
|
self._subject_index = SubjectIndexFilter( |
224
|
|
|
self._subject_index, exclude=exclude_list |
225
|
|
|
) |
226
|
|
|
return self._subject_index |
227
|
|
|
|
228
|
|
|
def _get_info(self, key: str) -> bool | datetime | None: |
229
|
|
|
try: |
230
|
|
|
be = self.backend |
231
|
|
|
if be is not None: |
232
|
|
|
return getattr(be, key) |
233
|
|
|
except AnnifException as err: |
234
|
|
|
logger.warning(err.format_message()) |
235
|
|
|
return None |
236
|
|
|
|
237
|
|
|
@property |
238
|
|
|
def is_trained(self) -> bool | None: |
239
|
|
|
return self._get_info("is_trained") |
240
|
|
|
|
241
|
|
|
@property |
242
|
|
|
def modification_time(self) -> datetime | None: |
243
|
|
|
return self._get_info("modification_time") |
244
|
|
|
|
245
|
|
|
def suggest_corpus( |
246
|
|
|
self, |
247
|
|
|
corpus: DocumentCorpus, |
248
|
|
|
backend_params: defaultdict[str, dict] | None = None, |
249
|
|
|
) -> annif.suggestion.SuggestionResults: |
250
|
|
|
"""Suggest subjects for the given documents corpus in batches of documents.""" |
251
|
|
|
suggestions = ( |
252
|
|
|
self.suggest([doc.text for doc in doc_batch], backend_params) |
253
|
|
|
for doc_batch in corpus.doc_batches |
254
|
|
|
) |
255
|
|
|
import annif.suggestion |
256
|
|
|
|
257
|
|
|
return annif.suggestion.SuggestionResults(suggestions) |
258
|
|
|
|
259
|
|
|
def suggest( |
260
|
|
|
self, |
261
|
|
|
texts: list[str], |
262
|
|
|
backend_params: defaultdict[str, dict] | None = None, |
263
|
|
|
) -> annif.suggestion.SuggestionBatch: |
264
|
|
|
"""Suggest subjects for the given documents batch.""" |
265
|
|
|
if not self.is_trained: |
266
|
|
|
if self.is_trained is None: |
267
|
|
|
logger.warning("Could not get train state information.") |
268
|
|
|
else: |
269
|
|
|
raise NotInitializedException("Project is not trained.") |
270
|
|
|
texts = [self.transform.transform_text(text) for text in texts] |
271
|
|
|
return self._suggest_with_backend(texts, backend_params) |
272
|
|
|
|
273
|
|
|
def train( |
274
|
|
|
self, |
275
|
|
|
corpus: DocumentCorpus, |
276
|
|
|
backend_params: defaultdict[str, dict] | None = None, |
277
|
|
|
jobs: int = 0, |
278
|
|
|
) -> None: |
279
|
|
|
"""train the project using documents from a metadata source""" |
280
|
|
|
if corpus != "cached": |
281
|
|
|
corpus = self.transform.transform_corpus(corpus) |
282
|
|
|
if backend_params is None: |
283
|
|
|
backend_params = {} |
284
|
|
|
beparams = backend_params.get(self.backend.backend_id, {}) |
285
|
|
|
self.backend.train(corpus, beparams, jobs) |
286
|
|
|
|
287
|
|
|
def learn( |
288
|
|
|
self, |
289
|
|
|
corpus: DocumentCorpus, |
290
|
|
|
backend_params: defaultdict[str, dict] | None = None, |
291
|
|
|
) -> None: |
292
|
|
|
"""further train the project using documents from a metadata source""" |
293
|
|
|
if backend_params is None: |
294
|
|
|
backend_params = {} |
295
|
|
|
beparams = backend_params.get(self.backend.backend_id, {}) |
296
|
|
|
corpus = self.transform.transform_corpus(corpus) |
297
|
|
|
if isinstance(self.backend, annif.backend.backend.AnnifLearningBackend): |
298
|
|
|
self.backend.learn(corpus, beparams) |
299
|
|
|
else: |
300
|
|
|
raise NotSupportedException( |
301
|
|
|
"Learning not supported by backend", project_id=self.project_id |
302
|
|
|
) |
303
|
|
|
|
304
|
|
|
def hyperopt( |
305
|
|
|
self, |
306
|
|
|
corpus: DocumentCorpus, |
307
|
|
|
trials: int, |
308
|
|
|
jobs: int, |
309
|
|
|
metric: str, |
310
|
|
|
results_file: LazyFile | None, |
311
|
|
|
) -> HPRecommendation: |
312
|
|
|
"""optimize the hyperparameters of the project using a validation |
313
|
|
|
corpus against a given metric""" |
314
|
|
|
if isinstance(self.backend, annif.backend.hyperopt.AnnifHyperoptBackend): |
315
|
|
|
optimizer = self.backend.get_hp_optimizer(corpus, metric) |
316
|
|
|
return optimizer.optimize(trials, jobs, results_file) |
317
|
|
|
|
318
|
|
|
raise NotSupportedException( |
319
|
|
|
"Hyperparameter optimization not supported " "by backend", |
320
|
|
|
project_id=self.project_id, |
321
|
|
|
) |
322
|
|
|
|
323
|
|
|
def dump(self) -> dict[str, str | dict | bool | datetime | None]: |
324
|
|
|
"""return this project as a dict""" |
325
|
|
|
|
326
|
|
|
try: |
327
|
|
|
vocab = { |
328
|
|
|
"vocab_id": self.vocab.vocab_id, |
329
|
|
|
"languages": sorted(self.vocab.languages), |
330
|
|
|
} |
331
|
|
|
vocab_lang = self.vocab_lang |
332
|
|
|
except ConfigurationException: |
333
|
|
|
vocab = None |
334
|
|
|
vocab_lang = None |
335
|
|
|
|
336
|
|
|
return { |
337
|
|
|
"project_id": self.project_id, |
338
|
|
|
"name": self.name, |
339
|
|
|
"language": self.language, |
340
|
|
|
"backend": {"backend_id": self.config.get("backend")}, |
341
|
|
|
"vocab": vocab, |
342
|
|
|
"vocab_language": vocab_lang, |
343
|
|
|
"is_trained": self.is_trained, |
344
|
|
|
"modification_time": self.modification_time, |
345
|
|
|
} |
346
|
|
|
|
347
|
|
|
def remove_model_data(self) -> None: |
348
|
|
|
"""remove the data of this project""" |
349
|
|
|
datadir_path = self._datadir_path |
350
|
|
|
if os.path.isdir(datadir_path): |
351
|
|
|
rmtree(datadir_path) |
352
|
|
|
logger.info("Removed model data for project {}.".format(self.project_id)) |
353
|
|
|
else: |
354
|
|
|
logger.warning( |
355
|
|
|
"No model data to remove for project {}.".format(self.project_id) |
356
|
|
|
) |
357
|
|
|
|