1
|
|
|
"""Classes for supporting document corpora""" |
2
|
|
|
|
3
|
|
|
from __future__ import annotations |
4
|
|
|
|
5
|
|
|
import csv |
6
|
|
|
import glob |
7
|
|
|
import gzip |
8
|
|
|
import os.path |
9
|
|
|
import re |
10
|
|
|
from itertools import islice |
11
|
|
|
from typing import TYPE_CHECKING |
12
|
|
|
|
13
|
|
|
import annif.util |
14
|
|
|
from annif.exception import OperationFailedException |
15
|
|
|
|
16
|
|
|
from .json import json_file_to_document |
17
|
|
|
from .types import Document, DocumentCorpus, SubjectSet |
18
|
|
|
|
19
|
|
|
if TYPE_CHECKING: |
20
|
|
|
from collections.abc import Iterator |
21
|
|
|
|
22
|
|
|
from annif.vocab import SubjectIndex |
23
|
|
|
|
24
|
|
|
logger = annif.logger |
25
|
|
|
|
26
|
|
|
|
27
|
|
|
class DocumentDirectory(DocumentCorpus): |
28
|
|
|
"""A directory of files as a full text document corpus""" |
29
|
|
|
|
30
|
|
|
def __init__( |
31
|
|
|
self, |
32
|
|
|
path: str, |
33
|
|
|
subject_index: SubjectIndex | None = None, |
34
|
|
|
language: str | None = None, |
35
|
|
|
require_subjects: bool = False, |
36
|
|
|
) -> None: |
37
|
|
|
self.path = path |
38
|
|
|
self.subject_index = subject_index |
39
|
|
|
self.language = language |
40
|
|
|
self.require_subjects = require_subjects |
41
|
|
|
|
42
|
|
|
def __iter__(self) -> Iterator[str]: |
43
|
|
|
"""Iterate through the directory, yielding file paths with corpus documents.""" |
44
|
|
|
|
45
|
|
|
# txt files |
46
|
|
|
for filename in sorted(glob.glob(os.path.join(self.path, "*.txt"))): |
47
|
|
|
yield filename |
48
|
|
|
|
49
|
|
|
# json files |
50
|
|
|
for filename in sorted(glob.glob(os.path.join(self.path, "*.json"))): |
51
|
|
|
yield filename |
52
|
|
|
|
53
|
|
|
@staticmethod |
54
|
|
|
def _get_subject_filename(filename: str) -> str | None: |
55
|
|
|
tsvfilename = re.sub(r"\.txt$", ".tsv", filename) |
56
|
|
|
if os.path.exists(tsvfilename): |
57
|
|
|
return tsvfilename |
58
|
|
|
|
59
|
|
|
keyfilename = re.sub(r"\.txt$", ".key", filename) |
60
|
|
|
if os.path.exists(keyfilename): |
61
|
|
|
return keyfilename |
62
|
|
|
|
63
|
|
|
return None |
64
|
|
|
|
65
|
|
|
def _read_txt_file(self, filename: str) -> Document | None: |
66
|
|
|
with open(filename, errors="replace", encoding="utf-8-sig") as docfile: |
67
|
|
|
text = docfile.read() |
68
|
|
|
if not self.require_subjects: |
69
|
|
|
return Document(text=text, subject_set=None, file_path=filename) |
70
|
|
|
|
71
|
|
|
subjfilename = self._get_subject_filename(filename) |
72
|
|
|
if subjfilename is None: |
73
|
|
|
# subjects required but not found, skipping this docfile |
74
|
|
|
return None |
75
|
|
|
|
76
|
|
|
with open(subjfilename, encoding="utf-8-sig") as subjfile: |
77
|
|
|
subjects = SubjectSet.from_string( |
78
|
|
|
subjfile.read(), self.subject_index, self.language |
79
|
|
|
) |
80
|
|
|
return Document(text=text, subject_set=subjects, file_path=filename) |
81
|
|
|
|
82
|
|
|
@property |
83
|
|
|
def documents(self) -> Iterator[Document]: |
84
|
|
|
for docfilename in self: |
85
|
|
|
if docfilename.endswith(".txt"): |
86
|
|
|
doc = self._read_txt_file(docfilename) |
87
|
|
|
else: |
88
|
|
|
doc = json_file_to_document( |
89
|
|
|
docfilename, |
90
|
|
|
self.subject_index, |
91
|
|
|
self.language, |
92
|
|
|
self.require_subjects, |
93
|
|
|
) |
94
|
|
|
|
95
|
|
|
if doc is not None: |
96
|
|
|
yield doc |
97
|
|
|
|
98
|
|
|
|
99
|
|
|
class DocumentFileTSV(DocumentCorpus): |
100
|
|
|
"""A TSV file as a corpus of documents with subjects""" |
101
|
|
|
|
102
|
|
|
def __init__(self, path: str, subject_index: SubjectIndex) -> None: |
103
|
|
|
self.path = path |
104
|
|
|
self.subject_index = subject_index |
105
|
|
|
|
106
|
|
|
@property |
107
|
|
|
def documents(self) -> Iterator[Document]: |
108
|
|
|
if self.path.endswith(".gz"): |
109
|
|
|
opener = gzip.open |
110
|
|
|
else: |
111
|
|
|
opener = open |
112
|
|
|
with opener(self.path, mode="rt", encoding="utf-8-sig") as tsvfile: |
113
|
|
|
for line in tsvfile: |
114
|
|
|
yield from self._parse_tsv_line(line) |
115
|
|
|
|
116
|
|
|
def _parse_tsv_line(self, line: str) -> Iterator[Document]: |
117
|
|
|
if "\t" in line: |
118
|
|
|
text, uris = line.split("\t", maxsplit=1) |
119
|
|
|
subject_ids = { |
120
|
|
|
self.subject_index.by_uri(annif.util.cleanup_uri(uri)) |
121
|
|
|
for uri in uris.split() |
122
|
|
|
} |
123
|
|
|
yield Document(text=text, subject_set=SubjectSet(subject_ids)) |
124
|
|
|
else: |
125
|
|
|
logger.warning('Skipping invalid line (missing tab): "%s"', line.rstrip()) |
126
|
|
|
|
127
|
|
|
|
128
|
|
|
class DocumentFileCSV(DocumentCorpus): |
129
|
|
|
"""A CSV file as a corpus of documents with subjects""" |
130
|
|
|
|
131
|
|
|
def __init__(self, path: str, subject_index: SubjectIndex) -> None: |
132
|
|
|
self.path = path |
133
|
|
|
self.subject_index = subject_index |
134
|
|
|
|
135
|
|
|
@property |
136
|
|
|
def documents(self) -> Iterator[Document]: |
137
|
|
|
if self.path.endswith(".gz"): |
138
|
|
|
opener = gzip.open |
139
|
|
|
else: |
140
|
|
|
opener = open |
141
|
|
|
with opener(self.path, mode="rt", encoding="utf-8-sig") as csvfile: |
142
|
|
|
reader = csv.DictReader(csvfile) |
143
|
|
|
if not self._check_fields(reader): |
144
|
|
|
raise OperationFailedException( |
145
|
|
|
f"Cannot parse CSV file {self.path}. " |
146
|
|
|
+ "The file must have a header row that defines at least " |
147
|
|
|
+ "the columns 'text' and 'subject_uris'." |
148
|
|
|
) |
149
|
|
|
for row in reader: |
150
|
|
|
yield from self._parse_row(row) |
151
|
|
|
|
152
|
|
|
def _parse_row(self, row: dict[str, str]) -> Iterator[Document]: |
153
|
|
|
subject_ids = { |
154
|
|
|
self.subject_index.by_uri(annif.util.cleanup_uri(uri)) |
155
|
|
|
for uri in (row["subject_uris"] or "").strip().split() |
156
|
|
|
} |
157
|
|
|
metadata = { |
158
|
|
|
key: val for key, val in row.items() if key not in ("text", "subject_uris") |
159
|
|
|
} |
160
|
|
|
yield Document( |
161
|
|
|
text=(row["text"] or ""), |
162
|
|
|
subject_set=SubjectSet(subject_ids), |
163
|
|
|
metadata=metadata, |
164
|
|
|
) |
165
|
|
|
|
166
|
|
|
def _check_fields(self, reader: csv.DictReader) -> bool: |
167
|
|
|
fns = reader.fieldnames |
168
|
|
|
return fns is not None and "text" in fns and "subject_uris" in fns |
169
|
|
|
|
170
|
|
|
@staticmethod |
171
|
|
|
def is_csv_file(path: str) -> bool: |
172
|
|
|
"""return True if the path looks like a CSV file""" |
173
|
|
|
|
174
|
|
|
path_lc = path.lower() |
175
|
|
|
return path_lc.endswith(".csv") or path_lc.endswith(".csv.gz") |
176
|
|
|
|
177
|
|
|
|
178
|
|
|
class DocumentList(DocumentCorpus): |
179
|
|
|
"""A document corpus based on a list of other iterable of Document |
180
|
|
|
objects""" |
181
|
|
|
|
182
|
|
|
def __init__(self, documents): |
183
|
|
|
self._documents = documents |
184
|
|
|
|
185
|
|
|
@property |
186
|
|
|
def documents(self): |
187
|
|
|
yield from self._documents |
188
|
|
|
|
189
|
|
|
|
190
|
|
|
class TransformingDocumentCorpus(DocumentCorpus): |
191
|
|
|
"""A document corpus that wraps another document corpus but transforms the |
192
|
|
|
documents using a given transform function""" |
193
|
|
|
|
194
|
|
|
def __init__(self, corpus, transform_fn): |
195
|
|
|
self._orig_corpus = corpus |
196
|
|
|
self._transform_fn = transform_fn |
197
|
|
|
|
198
|
|
|
@property |
199
|
|
|
def documents(self): |
200
|
|
|
for doc in self._orig_corpus.documents: |
201
|
|
|
yield self._transform_fn(doc) |
202
|
|
|
|
203
|
|
|
|
204
|
|
|
class LimitingDocumentCorpus(DocumentCorpus): |
205
|
|
|
"""A document corpus that wraps another document corpus but limits the |
206
|
|
|
number of documents to a given limit""" |
207
|
|
|
|
208
|
|
|
def __init__(self, corpus, docs_limit): |
209
|
|
|
self._orig_corpus = corpus |
210
|
|
|
self.docs_limit = docs_limit |
211
|
|
|
|
212
|
|
|
@property |
213
|
|
|
def documents(self): |
214
|
|
|
for doc in islice(self._orig_corpus.documents, self.docs_limit): |
215
|
|
|
yield doc |
216
|
|
|
|