1
|
|
|
"""Support for document corpora in JSON format""" |
2
|
|
|
|
3
|
|
|
import functools |
4
|
|
|
import json |
5
|
|
|
import os.path |
6
|
|
|
from importlib.resources import files |
7
|
|
|
|
8
|
|
|
import jsonschema |
9
|
|
|
|
10
|
|
|
import annif |
11
|
|
|
from annif.vocab import SubjectIndex |
12
|
|
|
|
13
|
|
|
from .types import Document, SubjectSet |
14
|
|
|
|
15
|
|
|
logger = annif.logger |
16
|
|
|
|
17
|
|
|
|
18
|
|
|
@functools.lru_cache(maxsize=1) |
19
|
|
|
def _get_json_schema(schema_name): |
20
|
|
|
schema_path = files("annif.schemas").joinpath(schema_name) |
21
|
|
|
with schema_path.open("r", encoding="utf-8") as schema_file: |
22
|
|
|
return json.load(schema_file) |
23
|
|
|
|
24
|
|
|
|
25
|
|
|
def _subjects_to_subject_set(subjects, subject_index, language): |
26
|
|
|
subject_ids = [] |
27
|
|
|
for subj in subjects: |
28
|
|
|
if "uri" in subj: |
29
|
|
|
subject_ids.append(subject_index.by_uri(subj["uri"])) |
30
|
|
|
else: |
31
|
|
|
subject_ids.append(subject_index.by_label(subj["label"], language)) |
32
|
|
|
return SubjectSet(subject_ids) |
33
|
|
|
|
34
|
|
|
|
35
|
|
|
def json_file_to_document( |
36
|
|
|
filename: str, |
37
|
|
|
subject_index: SubjectIndex, |
38
|
|
|
language: str, |
39
|
|
|
require_subjects: bool, |
40
|
|
|
) -> Document | None: |
41
|
|
|
if os.path.getsize(filename) == 0: |
42
|
|
|
logger.warning(f"Skipping empty file {filename}") |
43
|
|
|
return None |
44
|
|
|
|
45
|
|
|
with open(filename, "r", encoding="utf-8") as jsonfile: |
46
|
|
|
try: |
47
|
|
|
data = json.load(jsonfile) |
48
|
|
|
except json.JSONDecodeError as err: |
49
|
|
|
logger.warning(f"JSON parsing failed for file {filename}: {err}") |
50
|
|
|
return None |
51
|
|
|
|
52
|
|
|
try: |
53
|
|
|
jsonschema.validate(instance=data, schema=_get_json_schema("document.json")) |
54
|
|
|
except jsonschema.ValidationError as err: |
55
|
|
|
logger.warning(f"JSON validation failed for file {filename}: {err.message}") |
56
|
|
|
return None |
57
|
|
|
|
58
|
|
|
subject_set = _subjects_to_subject_set( |
59
|
|
|
data.get("subjects", []), subject_index, language |
60
|
|
|
) |
61
|
|
|
if require_subjects and not subject_set: |
62
|
|
|
return None |
63
|
|
|
|
64
|
|
|
return Document( |
65
|
|
|
text=data.get("text", ""), |
66
|
|
|
metadata=data.get("metadata", {}), |
67
|
|
|
subject_set=subject_set, |
68
|
|
|
file_path=filename, |
69
|
|
|
) |
70
|
|
|
|