1
|
|
|
"""Common functionality for analyzers.""" |
2
|
|
|
|
3
|
|
|
from __future__ import annotations |
4
|
|
|
|
5
|
|
|
import abc |
6
|
|
|
import functools |
7
|
|
|
import unicodedata |
8
|
|
|
|
9
|
|
|
import annif |
10
|
|
|
|
11
|
|
|
logger = annif.logger |
12
|
|
|
|
13
|
|
|
_KEY_TOKEN_MIN_LENGTH = "token_min_length" |
14
|
|
|
_NLTK_TOKENIZER_DATA = "punkt_tab" |
15
|
|
|
|
16
|
|
|
|
17
|
|
|
class Analyzer(metaclass=abc.ABCMeta): |
18
|
|
|
"""Base class for language-specific analyzers. Either tokenize_words or |
19
|
|
|
_normalize_word must be overridden in subclasses. Other methods may be |
20
|
|
|
overridden when necessary.""" |
21
|
|
|
|
22
|
|
|
name = None |
23
|
|
|
token_min_length = 3 # default value, can be overridden in instances |
24
|
|
|
|
25
|
|
|
@staticmethod |
26
|
|
|
def is_available() -> bool: |
27
|
|
|
"""Return True if the analyzer is available for use, False if not.""" |
28
|
|
|
return True # can be overridden in implementations if necessary |
29
|
|
|
|
30
|
|
|
def __init__(self, **kwargs) -> None: |
31
|
|
|
if _KEY_TOKEN_MIN_LENGTH in kwargs: |
32
|
|
|
self.token_min_length = int(kwargs[_KEY_TOKEN_MIN_LENGTH]) |
33
|
|
|
|
34
|
|
|
import nltk.data |
35
|
|
|
|
36
|
|
|
try: |
37
|
|
|
nltk.data.find("tokenizers/" + _NLTK_TOKENIZER_DATA) |
38
|
|
|
except LookupError as err: |
39
|
|
|
logger.debug(str(err)) |
40
|
|
|
if _NLTK_TOKENIZER_DATA in str(err): |
41
|
|
|
logger.warning( |
42
|
|
|
f'NLTK datapackage "{_NLTK_TOKENIZER_DATA}" not found, ' |
43
|
|
|
"downloading it now." |
44
|
|
|
) |
45
|
|
|
nltk.download(_NLTK_TOKENIZER_DATA) |
46
|
|
|
else: |
47
|
|
|
raise |
48
|
|
|
|
49
|
|
|
def tokenize_sentences(self, text: str) -> list[str]: |
50
|
|
|
"""Tokenize a piece of text (e.g. a document) into sentences.""" |
51
|
|
|
import nltk.tokenize |
52
|
|
|
|
53
|
|
|
return nltk.tokenize.sent_tokenize(text) |
54
|
|
|
|
55
|
|
|
@functools.lru_cache(maxsize=50000) |
56
|
|
|
def is_valid_token(self, word: str) -> bool: |
57
|
|
|
"""Return True if the word is an acceptable token.""" |
58
|
|
|
if len(word) < self.token_min_length: |
59
|
|
|
return False |
60
|
|
|
for char in word: |
61
|
|
|
category = unicodedata.category(char) |
62
|
|
|
if category[0] == "L": # letter |
63
|
|
|
return True |
64
|
|
|
return False |
65
|
|
|
|
66
|
|
|
def tokenize_words(self, text: str, filter: bool = True) -> list[str]: |
67
|
|
|
"""Tokenize a piece of text (e.g. a sentence) into words. If |
68
|
|
|
filter=True (default), only return valid tokens (e.g. not |
69
|
|
|
punctuation, numbers or very short words)""" |
70
|
|
|
|
71
|
|
|
import nltk.tokenize |
72
|
|
|
|
73
|
|
|
return [ |
74
|
|
|
self._normalize_word(word) |
75
|
|
|
for word in nltk.tokenize.word_tokenize(text) |
76
|
|
|
if (not filter or self.is_valid_token(word)) |
77
|
|
|
] |
78
|
|
|
|
79
|
|
|
def _normalize_word(self, word): |
80
|
|
|
"""Normalize (stem or lemmatize) a word form into a normal form.""" |
81
|
|
|
pass # pragma: no cover |
82
|
|
|
|