|
1
|
|
|
"""Annif backend using the fastText classifier""" |
|
2
|
|
|
|
|
3
|
|
|
from __future__ import annotations |
|
4
|
|
|
|
|
5
|
|
|
import collections |
|
6
|
|
|
import os.path |
|
7
|
|
|
from typing import TYPE_CHECKING, Any |
|
8
|
|
|
|
|
9
|
|
|
import fasttext |
|
10
|
|
|
|
|
11
|
|
|
import annif.util |
|
12
|
|
|
from annif.exception import NotInitializedException, NotSupportedException |
|
13
|
|
|
from annif.suggestion import SubjectSuggestion |
|
14
|
|
|
|
|
15
|
|
|
from . import backend, mixins |
|
16
|
|
|
|
|
17
|
|
|
if TYPE_CHECKING: |
|
18
|
|
|
from fasttext.FastText import _FastText |
|
19
|
|
|
from numpy import ndarray |
|
20
|
|
|
|
|
21
|
|
|
from annif.corpus.document import DocumentCorpus |
|
22
|
|
|
|
|
23
|
|
|
|
|
24
|
|
|
class FastTextBackend(mixins.ChunkingBackend, backend.AnnifBackend): |
|
25
|
|
|
"""fastText backend for Annif""" |
|
26
|
|
|
|
|
27
|
|
|
name = "fasttext" |
|
28
|
|
|
|
|
29
|
|
|
FASTTEXT_PARAMS = { |
|
30
|
|
|
"lr": float, |
|
31
|
|
|
"lrUpdateRate": int, |
|
32
|
|
|
"dim": int, |
|
33
|
|
|
"ws": int, |
|
34
|
|
|
"epoch": int, |
|
35
|
|
|
"minCount": int, |
|
36
|
|
|
"neg": int, |
|
37
|
|
|
"wordNgrams": int, |
|
38
|
|
|
"loss": str, |
|
39
|
|
|
"bucket": int, |
|
40
|
|
|
"minn": int, |
|
41
|
|
|
"maxn": int, |
|
42
|
|
|
"thread": int, |
|
43
|
|
|
"t": float, |
|
44
|
|
|
"pretrainedVectors": str, |
|
45
|
|
|
} |
|
46
|
|
|
|
|
47
|
|
|
DEFAULT_PARAMETERS = { |
|
48
|
|
|
"dim": 100, |
|
49
|
|
|
"lr": 0.25, |
|
50
|
|
|
"epoch": 5, |
|
51
|
|
|
"loss": "hs", |
|
52
|
|
|
} |
|
53
|
|
|
|
|
54
|
|
|
MODEL_FILE = "fasttext-model" |
|
55
|
|
|
TRAIN_FILE = "fasttext-train.txt" |
|
56
|
|
|
|
|
57
|
|
|
# defaults for uninitialized instances |
|
58
|
|
|
_model = None |
|
59
|
|
|
|
|
60
|
|
|
def default_params(self) -> dict[str, Any]: |
|
61
|
|
|
params = backend.AnnifBackend.DEFAULT_PARAMETERS.copy() |
|
62
|
|
|
params.update(mixins.ChunkingBackend.DEFAULT_PARAMETERS) |
|
63
|
|
|
params.update(self.DEFAULT_PARAMETERS) |
|
64
|
|
|
return params |
|
65
|
|
|
|
|
66
|
|
|
@staticmethod |
|
67
|
|
|
def _load_model(path: str) -> _FastText: |
|
68
|
|
|
return fasttext.load_model(path) |
|
69
|
|
|
|
|
70
|
|
|
def initialize(self, parallel: bool = False) -> None: |
|
71
|
|
|
if self._model is None: |
|
72
|
|
|
path = os.path.join(self.datadir, self.MODEL_FILE) |
|
73
|
|
|
self.debug("loading fastText model from {}".format(path)) |
|
74
|
|
|
if os.path.exists(path): |
|
75
|
|
|
self._model = self._load_model(path) |
|
76
|
|
|
self.debug("loaded model {}".format(str(self._model))) |
|
77
|
|
|
self.debug("dim: {}".format(self._model.get_dimension())) |
|
78
|
|
|
else: |
|
79
|
|
|
raise NotInitializedException( |
|
80
|
|
|
"model {} not found".format(path), backend_id=self.backend_id |
|
81
|
|
|
) |
|
82
|
|
|
|
|
83
|
|
|
@staticmethod |
|
84
|
|
|
def _id_to_label(subject_id: int) -> str: |
|
85
|
|
|
return "__label__{:d}".format(subject_id) |
|
86
|
|
|
|
|
87
|
|
|
def _label_to_subject_id(self, label: str) -> int: |
|
88
|
|
|
labelnum = label.replace("__label__", "") |
|
89
|
|
|
return int(labelnum) |
|
90
|
|
|
|
|
91
|
|
|
def _write_train_file(self, corpus: DocumentCorpus, filename: str) -> None: |
|
92
|
|
|
with open(filename, "w", encoding="utf-8") as trainfile: |
|
93
|
|
|
for doc in corpus.documents: |
|
94
|
|
|
text = self._normalize_text(doc.text) |
|
95
|
|
|
if text == "": |
|
96
|
|
|
continue |
|
97
|
|
|
labels = [self._id_to_label(sid) for sid in doc.subject_set] |
|
98
|
|
|
if labels: |
|
99
|
|
|
print(" ".join(labels), text, file=trainfile) |
|
100
|
|
|
else: |
|
101
|
|
|
self.warning(f'no labels for document "{doc.text}"') |
|
102
|
|
|
|
|
103
|
|
|
def _normalize_text(self, text: str) -> str: |
|
104
|
|
|
return " ".join(self.project.analyzer.tokenize_words(text)) |
|
105
|
|
|
|
|
106
|
|
|
def _create_train_file( |
|
107
|
|
|
self, |
|
108
|
|
|
corpus: DocumentCorpus, |
|
109
|
|
|
) -> None: |
|
110
|
|
|
self.info("creating fastText training file") |
|
111
|
|
|
|
|
112
|
|
|
annif.util.atomic_save( |
|
113
|
|
|
corpus, self.datadir, self.TRAIN_FILE, method=self._write_train_file |
|
114
|
|
|
) |
|
115
|
|
|
|
|
116
|
|
|
def _create_model(self, params: dict[str, Any], jobs: int) -> None: |
|
117
|
|
|
self.info("creating fastText model") |
|
118
|
|
|
trainpath = os.path.join(self.datadir, self.TRAIN_FILE) |
|
119
|
|
|
modelpath = os.path.join(self.datadir, self.MODEL_FILE) |
|
120
|
|
|
params = { |
|
121
|
|
|
param: self.FASTTEXT_PARAMS[param](val) |
|
122
|
|
|
for param, val in params.items() |
|
123
|
|
|
if param in self.FASTTEXT_PARAMS |
|
124
|
|
|
} |
|
125
|
|
|
if jobs != 0: # jobs set by user to non-default value |
|
126
|
|
|
params["thread"] = jobs |
|
127
|
|
|
self.debug("Model parameters: {}".format(params)) |
|
128
|
|
|
self._model = fasttext.train_supervised(trainpath, **params) |
|
129
|
|
|
self._model.save_model(modelpath) |
|
130
|
|
|
|
|
131
|
|
|
def _train( |
|
132
|
|
|
self, |
|
133
|
|
|
corpus: DocumentCorpus, |
|
134
|
|
|
params: dict[str, Any], |
|
135
|
|
|
jobs: int = 0, |
|
136
|
|
|
) -> None: |
|
137
|
|
|
if corpus != "cached": |
|
138
|
|
|
if corpus.is_empty(): |
|
139
|
|
|
raise NotSupportedException( |
|
140
|
|
|
"training backend {} with no documents".format(self.backend_id) |
|
141
|
|
|
) |
|
142
|
|
|
self._create_train_file(corpus) |
|
143
|
|
|
else: |
|
144
|
|
|
self.info("Reusing cached training data from previous run.") |
|
145
|
|
|
self._create_model(params, jobs) |
|
146
|
|
|
|
|
147
|
|
|
def _predict_chunks( |
|
148
|
|
|
self, chunktexts: list[str], limit: int |
|
149
|
|
|
) -> tuple[list[list[str]], list[ndarray]]: |
|
150
|
|
|
return self._model.predict( |
|
151
|
|
|
list( |
|
152
|
|
|
filter( |
|
153
|
|
|
None, [self._normalize_text(chunktext) for chunktext in chunktexts] |
|
154
|
|
|
) |
|
155
|
|
|
), |
|
156
|
|
|
limit, |
|
157
|
|
|
) |
|
158
|
|
|
|
|
159
|
|
|
def _suggest_chunks( |
|
160
|
|
|
self, chunktexts: list[str], params: dict[str, Any] |
|
161
|
|
|
) -> list[SubjectSuggestion]: |
|
162
|
|
|
limit = int(params["limit"]) |
|
163
|
|
|
chunklabels, chunkscores = self._predict_chunks(chunktexts, limit) |
|
164
|
|
|
label_scores = collections.defaultdict(float) |
|
165
|
|
|
for labels, scores in zip(chunklabels, chunkscores): |
|
166
|
|
|
for label, score in zip(labels, scores): |
|
167
|
|
|
label_scores[label] += score |
|
168
|
|
|
best_labels = sorted( |
|
169
|
|
|
[(score, label) for label, score in label_scores.items()], reverse=True |
|
170
|
|
|
) |
|
171
|
|
|
|
|
172
|
|
|
results = [] |
|
173
|
|
|
for score, label in best_labels[:limit]: |
|
174
|
|
|
results.append( |
|
175
|
|
|
SubjectSuggestion( |
|
176
|
|
|
subject_id=self._label_to_subject_id(label), |
|
177
|
|
|
score=score / len(chunktexts), |
|
178
|
|
|
) |
|
179
|
|
|
) |
|
180
|
|
|
return results |
|
181
|
|
|
|