1
|
|
|
''' |
2
|
|
|
Summary: |
3
|
|
|
Function generate_models from modelgen.py generates and compiles models |
4
|
|
|
Function train_models_on_samples trains those models |
5
|
|
|
Function plotTrainingProcess plots the training process |
6
|
|
|
Function find_best_architecture is wrapper function that combines |
7
|
|
|
these steps |
8
|
|
|
Example function calls in 'EvaluateDifferentModels.ipynb' |
9
|
|
|
''' |
10
|
1 |
|
import numpy as np |
11
|
1 |
|
from matplotlib import pyplot as plt |
12
|
1 |
|
from . import modelgen |
13
|
1 |
|
from sklearn import neighbors, metrics |
14
|
1 |
|
import warnings |
15
|
|
|
|
16
|
|
|
|
17
|
1 |
|
def train_models_on_samples(X_train, y_train, X_val, y_val, models, |
|
|
|
|
18
|
|
|
nr_epochs=5, subset_size=100, verbose=True): |
19
|
|
|
""" |
20
|
|
|
Given a list of compiled models, this function trains |
21
|
|
|
them all on a subset of the train data. If the given size of the subset is |
22
|
|
|
smaller then the size of the data, the complete data set is used. |
23
|
|
|
Parameters |
24
|
|
|
---------- |
25
|
|
|
X_train : numpy array of shape (num_samples, num_timesteps, num_channels) |
26
|
|
|
The input dataset for training |
27
|
|
|
y_train : numpy array of shape (num_samples, num_classes) |
28
|
|
|
The output classes for the train data, in binary format |
29
|
|
|
X_val : numpy array of shape (num_samples_val, num_timesteps, num_channels) |
30
|
|
|
The input dataset for validation |
31
|
|
|
y_val : numpy array of shape (num_samples_val, num_classes) |
32
|
|
|
The output classes for the validation data, in binary format |
33
|
|
|
models : list of model, params, modeltypes |
34
|
|
|
List of keras models to train |
35
|
|
|
nr_epochs : int, optional |
36
|
|
|
nr of epochs to use for training one model |
37
|
|
|
subset_size : |
38
|
|
|
The number of samples used from the complete train set |
39
|
|
|
subsize_set : int, optional |
40
|
|
|
number of samples to use from the training set for training these models |
|
|
|
|
41
|
|
|
verbose : bool, optional |
42
|
|
|
flag for displaying verbose output |
43
|
|
|
|
44
|
|
|
Returns |
45
|
|
|
---------- |
46
|
|
|
histories : list of Keras History objects |
47
|
|
|
train histories for all models |
48
|
|
|
val_accuracies : list of floats |
49
|
|
|
validation accuraracies of the models |
50
|
|
|
val_losses : list of floats |
51
|
|
|
validation losses of the models |
52
|
|
|
""" |
53
|
|
|
# if subset_size is smaller then X_train, this will work fine |
54
|
1 |
|
X_train_sub = X_train[:subset_size, :, :] |
|
|
|
|
55
|
1 |
|
y_train_sub = y_train[:subset_size, :] |
56
|
|
|
|
57
|
1 |
|
histories = [] |
58
|
1 |
|
val_accuracies = [] |
59
|
1 |
|
val_losses = [] |
60
|
1 |
|
for model, params, model_types in models: |
61
|
1 |
|
history = model.fit(X_train_sub, y_train_sub, |
62
|
|
|
nb_epoch=nr_epochs, batch_size=20, |
63
|
|
|
# see comment on subsize_set |
64
|
|
|
validation_data=(X_val, y_val), |
65
|
|
|
verbose=verbose) |
66
|
1 |
|
histories.append(history) |
67
|
1 |
|
val_accuracies.append(history.history['val_acc'][-1]) |
68
|
1 |
|
val_losses.append(history.history['val_loss'][-1]) |
69
|
|
|
|
70
|
1 |
|
return histories, val_accuracies, val_losses |
71
|
|
|
|
72
|
|
|
|
73
|
1 |
|
def plotTrainingProcess(history, name='Model', ax=None): |
|
|
|
|
74
|
|
|
""" |
75
|
|
|
This function plots the loss and accuracy on the train and validation set, |
76
|
|
|
for each epoch in the history of one model. |
77
|
|
|
|
78
|
|
|
Parameters |
79
|
|
|
---------- |
80
|
|
|
history : keras History object for one model |
81
|
|
|
The history object of the training process corresponding to one model |
82
|
|
|
|
83
|
|
|
""" |
84
|
|
|
if ax is None: |
85
|
|
|
fig, ax = plt.subplots() |
86
|
|
|
ax2 = ax.twinx() |
87
|
|
|
LN = len(history.history['val_loss']) |
|
|
|
|
88
|
|
|
val_loss, = ax.plot(range(LN), history.history['val_loss'], 'g--', |
89
|
|
|
label='validation loss') |
90
|
|
|
train_loss, = ax.plot(range(LN), history.history['loss'], 'g-', |
91
|
|
|
label='train loss') |
92
|
|
|
val_acc, = ax2.plot(range(LN), history.history['val_acc'], 'b--', |
93
|
|
|
label='validation accuracy') |
94
|
|
|
train_acc, = ax2.plot(range(LN), history.history['acc'], 'b-', |
95
|
|
|
label='train accuracy') |
96
|
|
|
ax.set_xlabel('epoch') |
97
|
|
|
ax.set_ylabel('loss', color='g') |
98
|
|
|
ax2.set_ylabel('accuracy', color='b') |
99
|
|
|
plt.legend(handles=[val_loss, train_loss, val_acc, train_acc], |
100
|
|
|
loc=2, bbox_to_anchor=(1.1, 1)) |
101
|
|
|
plt.title(name) |
102
|
|
|
|
103
|
|
|
|
104
|
1 |
|
def find_best_architecture(X_train, y_train, X_val, y_val, verbose=True, |
|
|
|
|
105
|
|
|
number_of_models=5, nr_epochs=5, subset_size=100, |
106
|
|
|
**kwargs |
107
|
|
|
): |
108
|
|
|
""" |
109
|
|
|
Tries out a number of models on a subsample of the data, |
110
|
|
|
and outputs the best found architecture and hyperparameters. |
111
|
|
|
|
112
|
|
|
Parameters |
113
|
|
|
---------- |
114
|
|
|
X_train : numpy array of shape (num_samples, num_timesteps, num_channels) |
115
|
|
|
The input dataset for training |
116
|
|
|
y_train : numpy array of shape (num_samples, num_classes) |
117
|
|
|
The output classes for the train data, in binary format |
118
|
|
|
X_val : numpy array of shape (num_samples_val, num_timesteps, num_channels) |
119
|
|
|
The input dataset for validation |
120
|
|
|
y_val : numpy array of shape (num_samples_val, num_classes) |
121
|
|
|
The output classes for the validation data, in binary format |
122
|
|
|
verbose : bool, optional |
123
|
|
|
flag for displaying verbose output |
124
|
|
|
number_of_models : int |
125
|
|
|
The number of models to generate and test |
126
|
|
|
nr_epochs : int |
127
|
|
|
The number of epochs that each model is trained |
128
|
|
|
subset_size : int |
129
|
|
|
The size of the subset of the data that is used for finding the optimal architecture |
|
|
|
|
130
|
|
|
**kwargs: key-value parameters |
131
|
|
|
parameters for generating the models (see docstring for modelgen.generate_models) |
|
|
|
|
132
|
|
|
|
133
|
|
|
Returns |
134
|
|
|
---------- |
135
|
|
|
best_model : Keras model |
136
|
|
|
Best performing model, already trained on a small sample data set. |
137
|
|
|
best_params : dict |
138
|
|
|
Dictionary containing the hyperparameters for the best model |
139
|
|
|
best_model_type : str |
140
|
|
|
Type of the best model |
141
|
|
|
knn_acc : float |
142
|
|
|
accuaracy for kNN prediction on validation set |
143
|
|
|
""" |
144
|
1 |
|
models = modelgen.generate_models(X_train.shape, y_train.shape[1], |
145
|
|
|
number_of_models=number_of_models, |
146
|
|
|
**kwargs) |
147
|
1 |
|
histories, val_accuracies, val_losses = train_models_on_samples(X_train, |
148
|
|
|
y_train, |
149
|
|
|
X_val, |
150
|
|
|
y_val, |
151
|
|
|
models, |
152
|
|
|
nr_epochs, |
153
|
|
|
subset_size=subset_size, |
|
|
|
|
154
|
|
|
verbose=verbose) |
|
|
|
|
155
|
1 |
|
best_model_index = np.argmax(val_accuracies) |
156
|
1 |
|
best_model, best_params, best_model_type = models[best_model_index] |
157
|
1 |
|
knn_acc = kNN_accuracy( |
158
|
|
|
X_train[:subset_size, :, :], y_train[:subset_size, :], X_val, y_val) |
159
|
1 |
|
if verbose: |
160
|
|
|
for i in range(len(models)): # <= now one plot per model, ultimately we |
|
|
|
|
161
|
|
|
# may want all models in one plot to allow for direct comparison |
162
|
|
|
name = str(models[i][1]) |
163
|
|
|
plotTrainingProcess(histories[i], name) |
164
|
|
|
print('Best model: model ', best_model_index) |
165
|
|
|
print('Model type: ', best_model_type) |
166
|
|
|
print('Hyperparameters: ', best_params) |
167
|
|
|
print('Accuracy on validation set: ', val_accuracies[best_model_index]) |
168
|
|
|
print('Accuracy of kNN on validation set', knn_acc) |
169
|
|
|
|
170
|
1 |
|
if val_accuracies[best_model_index] < knn_acc: |
171
|
|
|
warnings.warn('Best model not better than kNN: ' + |
172
|
|
|
str(val_accuracies[best_model_index]) + ' vs ' + |
173
|
|
|
str(knn_acc) |
174
|
|
|
) |
175
|
1 |
|
return best_model, best_params, best_model_type, knn_acc |
176
|
|
|
|
177
|
|
|
|
178
|
1 |
|
def kNN_accuracy(X_train, y_train, X_val, y_val, k=1): |
|
|
|
|
179
|
|
|
""" |
180
|
|
|
Performs k-Neigherst Neighbors and returns the accuracy score. |
181
|
|
|
|
182
|
|
|
Parameters |
183
|
|
|
---------- |
184
|
|
|
X_train : numpy array |
185
|
|
|
Train set of shape (num_samples, num_timesteps, num_channels) |
186
|
|
|
y_train : numpy array |
187
|
|
|
Class labels for train set |
188
|
|
|
X_val : numpy array |
189
|
|
|
Validation set of shape (num_samples, num_timesteps, num_channels) |
190
|
|
|
y_val : numpy array |
191
|
|
|
Class labels for validation set |
192
|
|
|
k : int |
193
|
|
|
number of neighbors to use for classifying |
194
|
|
|
|
195
|
|
|
Returns |
196
|
|
|
------- |
197
|
|
|
accuracy: float |
198
|
|
|
accuracy score on the validation set |
199
|
|
|
""" |
200
|
1 |
|
num_samples, num_timesteps, num_channels = X_train.shape |
201
|
1 |
|
clf = neighbors.KNeighborsClassifier(k) |
202
|
1 |
|
clf.fit( |
203
|
|
|
X_train.reshape( |
204
|
|
|
num_samples, |
205
|
|
|
num_timesteps * |
206
|
|
|
num_channels), |
207
|
|
|
y_train) |
208
|
1 |
|
num_samples, num_timesteps, num_channels = X_val.shape |
209
|
1 |
|
val_predict = clf.predict( |
210
|
|
|
X_val.reshape(num_samples, |
211
|
|
|
num_timesteps * num_channels)) |
212
|
|
|
return metrics.accuracy_score(val_predict, y_val) |
213
|
|
|
|
This check looks for invalid names for a range of different identifiers.
You can set regular expressions to which the identifiers must conform if the defaults do not match your requirements.
If your project includes a Pylint configuration file, the settings contained in that file take precedence.
To find out more about Pylint, please refer to their site.