| 1 |  |  | """ | 
            
                                                                                                            
                            
            
                                    
            
            
                | 2 |  |  |  Summary: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 3 |  |  |  Function fetch_and_preprocess from tutorial_pamap2.py helps to fetch and | 
            
                                                                                                            
                            
            
                                    
            
            
                | 4 |  |  |  preproces the data. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 5 |  |  |  Example function calls in 'Tutorial mcfly on PAMAP2.ipynb' | 
            
                                                                                                            
                            
            
                                    
            
            
                | 6 |  |  | """ | 
            
                                                                                                            
                            
            
                                    
            
            
                | 7 | 1 |  | import numpy as np | 
            
                                                                                                            
                            
            
                                    
            
            
                | 8 | 1 |  | from numpy import genfromtxt | 
            
                                                                                                            
                            
            
                                    
            
            
                | 9 | 1 |  | import pandas as pd | 
            
                                                                                                            
                            
            
                                    
            
            
                | 10 |  |  | import matplotlib.pyplot as plt | 
            
                                                                                                            
                            
            
                                    
            
            
                | 11 |  |  | from os import listdir | 
            
                                                                                                            
                            
            
                                    
            
            
                | 12 |  |  | import os.path | 
            
                                                                                                            
                            
            
                                    
            
            
                | 13 |  |  | import urllib.request | 
            
                                                                                                            
                            
            
                                    
            
            
                | 14 |  |  | import zipfile | 
            
                                                                                                            
                            
            
                                    
            
            
                | 15 |  |  | import keras | 
            
                                                                                                            
                            
            
                                    
            
            
                | 16 |  |  | from keras.utils.np_utils import to_categorical | 
            
                                                                                                            
                            
            
                                    
            
            
                | 17 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 18 |  |  | def split_activities(labels, X, borders=10*100): | 
                            
                    |  |  |  | 
                                                                                        
                                                                                     | 
            
                                                                                                            
                            
            
                                    
            
            
                | 19 |  |  |     """ | 
            
                                                                                                            
                            
            
                                    
            
            
                | 20 |  |  |     Splits up the data per activity and exclude activity=0. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 21 |  |  |     Also remove borders for each activity. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 22 |  |  |     Returns lists with subdatasets | 
            
                                                                                                            
                            
            
                                    
            
            
                | 23 |  |  |     """ | 
            
                                                                                                            
                            
            
                                    
            
            
                | 24 |  |  |     tot_len = len(labels) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 25 |  |  |     startpoints = np.where([1] + [labels[i] != labels[i-1] \ | 
            
                                                                                                            
                            
            
                                    
            
            
                | 26 |  |  |         for i in range(1, tot_len)])[0] | 
            
                                                                                                            
                            
            
                                    
            
            
                | 27 |  |  |     endpoints = np.append(startpoints[1:]-1, tot_len-1) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 28 |  |  |     acts = [labels[s] for s, e in zip(startpoints, endpoints)] | 
            
                                                                                                            
                            
            
                                    
            
            
                | 29 |  |  |     #Also split up the data, and only keep the non-zero activities | 
            
                                                                                                            
                            
            
                                    
            
            
                | 30 |  |  |     xysplit = [(X[s+borders:e-borders+1, :], a) \ | 
            
                                                                                                            
                            
            
                                    
            
            
                | 31 |  |  |         for s, e, a in zip(startpoints, endpoints, acts) if a != 0] | 
            
                                                                                                            
                            
            
                                    
            
            
                | 32 |  |  |     xysplit = [(X, y) for X, y in xysplit if len(X) > 0] | 
            
                                                                                                            
                            
            
                                    
            
            
                | 33 |  |  |     Xlist = [X for X, y in xysplit] | 
                            
                    |  |  |  | 
                                                                                        
                                                                                     | 
            
                                                                                                            
                            
            
                                    
            
            
                | 34 |  |  |     ylist = [y for X, y in xysplit] | 
            
                                                                                                            
                            
            
                                    
            
            
                | 35 |  |  |     return Xlist, ylist | 
            
                                                                                                            
                            
            
                                    
            
            
                | 36 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 37 |  |  | def sliding_window(frame_length, step, Xsamples,\ | 
                            
                    |  |  |  | 
                                                                                        
                                                                                            
                                                                                     | 
            
                                                                                                            
                            
            
                                    
            
            
                | 38 |  |  |     ysamples, ysampleslist, Xsampleslist): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 39 |  |  |     """ | 
            
                                                                                                            
                            
            
                                    
            
            
                | 40 |  |  |     Splits time series in ysampleslist and Xsampleslist | 
            
                                                                                                            
                            
            
                                    
            
            
                | 41 |  |  |     into segments by applying a sliding overlapping window | 
            
                                                                                                            
                            
            
                                    
            
            
                | 42 |  |  |     of size equal to frame_length with steps equal to step | 
            
                                                                                                            
                            
            
                                    
            
            
                | 43 |  |  |     it does this for all the samples and appends all the output together. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 44 |  |  |     So, the participant distinction is not kept | 
            
                                                                                                            
                            
            
                                    
            
            
                | 45 |  |  |     """ | 
            
                                                                                                            
                            
            
                                    
            
            
                | 46 |  |  |     for j in range(len(Xsampleslist)): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 47 |  |  |         X = Xsampleslist[j] | 
                            
                    |  |  |  | 
                                                                                        
                                                                                     | 
            
                                                                                                            
                            
            
                                    
            
            
                | 48 |  |  |         ybinary = ysampleslist[j] | 
            
                                                                                                            
                            
            
                                    
            
            
                | 49 |  |  |         for i in range(0, X.shape[0]-frame_length, step): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 50 |  |  |             xsub = X[i:i+frame_length, :] | 
            
                                                                                                            
                            
            
                                    
            
            
                | 51 |  |  |             ysub = ybinary | 
            
                                                                                                            
                            
            
                                    
            
            
                | 52 |  |  |             Xsamples.append(xsub) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 53 |  |  |             ysamples.append(ysub) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 54 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 55 |  |  | def transform_y(y, mapclasses, nr_classes): | 
                            
                    |  |  |  | 
                                                                                        
                                                                                     | 
            
                                                                                                            
                            
            
                                    
            
            
                | 56 |  |  |     """ | 
            
                                                                                                            
                            
            
                                    
            
            
                | 57 |  |  |     Transforms y, a tuple with sequences of class per time segment per sample, | 
            
                                                                                                            
                            
            
                                    
            
            
                | 58 |  |  |     into a binary matrix per sample | 
            
                                                                                                            
                            
            
                                    
            
            
                | 59 |  |  |     """ | 
            
                                                                                                            
                            
            
                                    
            
            
                | 60 |  |  |     ymapped = np.array([mapclasses[c] for c in y], dtype='int') | 
            
                                                                                                            
                            
            
                                    
            
            
                | 61 |  |  |     ybinary = to_categorical(ymapped, nr_classes) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 62 |  |  |     return ybinary | 
            
                                                                                                            
                            
            
                                    
            
            
                | 63 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 64 |  |  | def addheader(datasets): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 65 |  |  |     """ | 
            
                                                                                                            
                            
            
                                    
            
            
                | 66 |  |  |     The columns of the pandas data frame are numbers | 
            
                                                                                                            
                            
            
                                    
            
            
                | 67 |  |  |     this function adds the column labels | 
            
                                                                                                            
                            
            
                                    
            
            
                | 68 |  |  |     """ | 
            
                                                                                                            
                            
            
                                    
            
            
                | 69 |  |  |     axes = ['x', 'y', 'z'] | 
            
                                                                                                            
                            
            
                                    
            
            
                | 70 |  |  |     IMUsensor_columns = ['temperature'] + \ | 
                            
                    |  |  |  | 
                                                                                        
                                                                                     | 
            
                                                                                                            
                            
            
                                    
            
            
                | 71 |  |  |                     ['acc_16g_' + i for i in axes] + \ | 
            
                                                                                                            
                            
            
                                    
            
            
                | 72 |  |  |                     ['acc_6g_' + i for i in axes] + \ | 
            
                                                                                                            
                            
            
                                    
            
            
                | 73 |  |  |                     ['gyroscope_'+ i for i in axes] + \ | 
            
                                                                                                            
                            
            
                                    
            
            
                | 74 |  |  |                     ['magnometer_'+ i for i in axes] + \ | 
            
                                                                                                            
                            
            
                                    
            
            
                | 75 |  |  |                     ['orientation_' + str(i) for i in range(4)] | 
            
                                                                                                            
                            
            
                                    
            
            
                | 76 |  |  |     header = ["timestamp", "activityID", "heartrate"] + ["hand_"+s \ | 
            
                                                                                                            
                            
            
                                    
            
            
                | 77 |  |  |         for s in IMUsensor_columns] \ | 
            
                                                                                                            
                            
            
                                    
            
            
                | 78 |  |  |         + ["chest_"+s for s in IMUsensor_columns]+ ["ankle_"+s \ | 
            
                                                                                                            
                            
            
                                    
            
            
                | 79 |  |  |             for s in IMUsensor_columns] | 
            
                                                                                                            
                            
            
                                    
            
            
                | 80 |  |  |     for i in range(0, len(datasets)): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 81 |  |  |             datasets[i].columns = header | 
                            
                    |  |  |  | 
                                                                                        
                                                                                     | 
            
                                                                                                            
                            
            
                                    
            
            
                | 82 |  |  |     return datasets | 
            
                                                                                                            
                                                                
            
                                    
            
            
                | 83 |  |  |  | 
            
                                                                        
                            
            
                                    
            
            
                | 84 |  |  | def numpify_and_store(X, y, xname, yname, outdatapath, shuffle=False): | 
                            
                    |  |  |  | 
                                                                                        
                                                                                            
                                                                                     | 
            
                                                                        
                            
            
                                    
            
            
                | 85 |  |  |     """ | 
            
                                                                        
                            
            
                                    
            
            
                | 86 |  |  |     Converts python lists x and y into numpy arrays | 
            
                                                                        
                            
            
                                    
            
            
                | 87 |  |  |     and stores the numpy array in directory outdatapath | 
            
                                                                        
                            
            
                                    
            
            
                | 88 |  |  |     shuffle is optional and shuffles the samples | 
            
                                                                        
                            
            
                                    
            
            
                | 89 |  |  |     """ | 
            
                                                                        
                            
            
                                    
            
            
                | 90 |  |  |     X = np.array(X) | 
            
                                                                        
                            
            
                                    
            
            
                | 91 |  |  |     y = np.array(y) | 
            
                                                                        
                            
            
                                    
            
            
                | 92 |  |  |     #Shuffle around the train set | 
            
                                                                        
                            
            
                                    
            
            
                | 93 |  |  |     if shuffle is True: | 
            
                                                                        
                            
            
                                    
            
            
                | 94 |  |  |         np.random.seed(123) | 
            
                                                                        
                            
            
                                    
            
            
                | 95 |  |  |         neworder = np.random.permutation(X.shape[0]) | 
            
                                                                        
                            
            
                                    
            
            
                | 96 |  |  |         X = X[neworder, :, :] | 
            
                                                                        
                            
            
                                    
            
            
                | 97 |  |  |         y = y[neworder, :] | 
            
                                                                        
                            
            
                                    
            
            
                | 98 |  |  |     # Save binary file | 
            
                                                                        
                            
            
                                    
            
            
                | 99 |  |  |     np.save(outdatapath+ xname, X) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 100 |  |  |     np.save(outdatapath+ yname, y) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 101 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 102 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 103 |  |  | def fetch_data(directory_to_extract_to): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 104 |  |  |     """ | 
            
                                                                                                            
                            
            
                                    
            
            
                | 105 |  |  |     Fetch the data and extract the contents of the zip file | 
            
                                                                                                            
                            
            
                                    
            
            
                | 106 |  |  |     to the directory_to_extract_to. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 107 |  |  |     First check whether this was done before, if yes, then skip | 
            
                                                                                                            
                            
            
                                    
            
            
                | 108 |  |  |     """ | 
            
                                                                                                            
                            
            
                                    
            
            
                | 109 |  |  |     targetdir = directory_to_extract_to + '/PAMAP2' | 
            
                                                                                                            
                            
            
                                    
            
            
                | 110 |  |  |     if os.path.exists(targetdir): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 111 |  |  |         print('Data previously downloaded and stored in ' + targetdir) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 112 |  |  |     else: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 113 |  |  |         os.makedirs(targetdir) # create target directory | 
            
                                                                                                            
                            
            
                                    
            
            
                | 114 |  |  |         #download the PAMAP2 data, this is 688 Mb | 
            
                                                                                                            
                            
            
                                    
            
            
                | 115 |  |  |         path_to_zip_file = directory_to_extract_to + '/PAMAP2_Dataset.zip' | 
            
                                                                                                            
                            
            
                                    
            
            
                | 116 |  |  |         test_file_exist = os.path.isfile(path_to_zip_file) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 117 |  |  |         if test_file_exist is False: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 118 |  |  |             url = str('https://archive.ics.uci.edu/ml/' + | 
            
                                                                                                            
                            
            
                                    
            
            
                | 119 |  |  |                 'machine-learning-databases/00231/PAMAP2_Dataset.zip') | 
            
                                                                                                            
                            
            
                                    
            
            
                | 120 |  |  |             #retrieve data from url | 
            
                                                                                                            
                            
            
                                    
            
            
                | 121 |  |  |             local_fn, headers = urllib.request.urlretrieve(url,\ | 
            
                                                                                                            
                            
            
                                    
            
            
                | 122 |  |  |                 filename=path_to_zip_file) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 123 |  |  |             print('Download complete and stored in: ' + path_to_zip_file) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 124 |  |  |         else: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 125 |  |  |             print('The data was previously downloaded and stored in ' + | 
            
                                                                                                            
                            
            
                                    
            
            
                | 126 |  |  |                 path_to_zip_file) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 127 |  |  |         # unzip | 
            
                                                                                                            
                            
            
                                    
            
            
                | 128 |  |  |         with zipfile.ZipFile(path_to_zip_file ,"r") as zip_ref: | 
                            
                    |  |  |  | 
                                                                                        
                                                                                            
                                                                                     | 
            
                                                                                                            
                            
            
                                    
            
            
                | 129 |  |  |             zip_ref.extractall(targetdir) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 130 |  |  |     return targetdir | 
            
                                                                                                            
                            
            
                                    
            
            
                | 131 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 132 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 133 |  |  | def fetch_and_preprocess(directory_to_extract_to, columns_to_use=None): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 134 |  |  |     """ | 
            
                                                                                                            
                            
            
                                    
            
            
                | 135 |  |  |     High level function to fetch_and_preprocess the PAMAP2 dataset | 
            
                                                                                                            
                            
            
                                    
            
            
                | 136 |  |  |     directory_to_extract_to: the directory where the data will be stored | 
            
                                                                                                            
                            
            
                                    
            
            
                | 137 |  |  |     columns_to_use: the columns to use | 
            
                                                                                                            
                            
            
                                    
            
            
                | 138 |  |  |     """ | 
            
                                                                                                            
                            
            
                                    
            
            
                | 139 |  |  |     if columns_to_use is None: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 140 |  |  |         columns_to_use = ['hand_acc_16g_x', 'hand_acc_16g_y', 'hand_acc_16g_z', | 
            
                                                                                                            
                            
            
                                    
            
            
                | 141 |  |  |                      'ankle_acc_16g_x', 'ankle_acc_16g_y', 'ankle_acc_16g_z', | 
            
                                                                                                            
                            
            
                                    
            
            
                | 142 |  |  |                      'chest_acc_16g_x', 'chest_acc_16g_y', 'chest_acc_16g_z'] | 
            
                                                                                                            
                            
            
                                    
            
            
                | 143 |  |  |     targetdir = fetch_data(directory_to_extract_to) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 144 |  |  |     outdatapath = targetdir + '/PAMAP2_Dataset' + '/slidingwindow512cleaned/' | 
            
                                                                                                            
                            
            
                                    
            
            
                | 145 |  |  |     if not os.path.exists(outdatapath): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 146 |  |  |         os.makedirs(outdatapath) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 147 |  |  |     if os.path.isfile(outdatapath+'x_train.npy'): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 148 |  |  |         print('Data previously pre-processed and np-files saved to ' + | 
            
                                                                                                            
                            
            
                                    
            
            
                | 149 |  |  |             outdatapath) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 150 |  |  |     else: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 151 |  |  |         datadir = targetdir + '/PAMAP2_Dataset/Protocol' | 
            
                                                                                                            
                            
            
                                    
            
            
                | 152 |  |  |         filenames = listdir(datadir) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 153 |  |  |         print('Start pre-processing all ' + str(len(filenames)) + ' files...') | 
            
                                                                                                            
                            
            
                                    
            
            
                | 154 |  |  |         # load the files and put them in a list of pandas dataframes: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 155 |  |  |         datasets = [pd.read_csv(datadir+'/'+fn, header=None, sep=' ') \ | 
            
                                                                                                            
                            
            
                                    
            
            
                | 156 |  |  |             for fn in filenames] | 
            
                                                                                                            
                            
            
                                    
            
            
                | 157 |  |  |         datasets = addheader(datasets) # add headers to the datasets | 
            
                                                                                                            
                            
            
                                    
            
            
                | 158 |  |  |         #print(len(datasets)) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 159 |  |  |         print(datasets[0].shape) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 160 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 161 |  |  |         #Interpolate dataset to get same sample rate between channels | 
            
                                                                                                            
                            
            
                                    
            
            
                | 162 |  |  |         datasets_filled = [d.interpolate() for d in datasets] | 
            
                                                                                                            
                            
            
                                    
            
            
                | 163 |  |  |         # Create mapping for class labels | 
            
                                                                                                            
                            
            
                                    
            
            
                | 164 |  |  |         ysetall = [set(np.array(data.activityID)) - set([0]) \ | 
            
                                                                                                            
                            
            
                                    
            
            
                | 165 |  |  |             for data in datasets_filled] | 
            
                                                                                                            
                            
            
                                    
            
            
                | 166 |  |  |         classlabels = list(set.union(*[set(y) for y in ysetall])) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 167 |  |  |         nr_classes = len(classlabels) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 168 |  |  |         mapclasses = {classlabels[i] : i for i in range(len(classlabels))} | 
            
                                                                                                            
                            
            
                                    
            
            
                | 169 |  |  |         #Create input (x) and output (y) sets | 
            
                                                                                                            
                            
            
                                    
            
            
                | 170 |  |  |         xall = [np.array(data[columns_to_use]) for data in datasets_filled] | 
            
                                                                                                            
                            
            
                                    
            
            
                | 171 |  |  |         yall = [np.array(data.activityID) for data in datasets_filled] | 
            
                                                                                                            
                            
            
                                    
            
            
                | 172 |  |  |         xylists = [split_activities(y, x) for x, y in zip(xall, yall)] | 
            
                                                                                                            
                            
            
                                    
            
            
                | 173 |  |  |         Xlists, ylists = zip(*xylists) | 
                            
                    |  |  |  | 
                                                                                        
                                                                                     | 
            
                                                                                                            
                            
            
                                    
            
            
                | 174 |  |  |         ybinarylists = [transform_y(y, mapclasses, nr_classes) for y in ylists] | 
            
                                                                                                            
                            
            
                                    
            
            
                | 175 |  |  |         # Split in train, test and val | 
            
                                                                                                            
                            
            
                                    
            
            
                | 176 |  |  |         train_range = slice(0, 6) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 177 |  |  |         val_range = 6 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 178 |  |  |         test_range = slice(7, len(datasets_filled)) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 179 |  |  |         x_trainlist = [X for Xlist in Xlists[train_range] for X in Xlist] | 
            
                                                                                                            
                            
            
                                    
            
            
                | 180 |  |  |         x_vallist = [X for X in Xlists[val_range]] | 
            
                                                                                                            
                            
            
                                    
            
            
                | 181 |  |  |         x_testlist = [X for Xlist in Xlists[test_range] for X in Xlist] | 
            
                                                                                                            
                            
            
                                    
            
            
                | 182 |  |  |         y_trainlist = [y for ylist in ybinarylists[train_range] for y in ylist] | 
            
                                                                                                            
                            
            
                                    
            
            
                | 183 |  |  |         y_vallist = [y for y in ybinarylists[val_range]] | 
            
                                                                                                            
                            
            
                                    
            
            
                | 184 |  |  |         y_testlist = [y for ylist in ybinarylists[test_range] for y in ylist] | 
            
                                                                                                            
                            
            
                                    
            
            
                | 185 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 186 |  |  |         # Take sliding-window frames. Target is label of last time step | 
            
                                                                                                            
                            
            
                                    
            
            
                | 187 |  |  |         # Data is 100 Hz | 
            
                                                                                                            
                            
            
                                    
            
            
                | 188 |  |  |         frame_length = int(5.12 * 100) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 189 |  |  |         step = 1 * 100 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 190 |  |  |         x_train = [] | 
            
                                                                                                            
                            
            
                                    
            
            
                | 191 |  |  |         y_train = [] | 
            
                                                                                                            
                            
            
                                    
            
            
                | 192 |  |  |         x_val = [] | 
            
                                                                                                            
                            
            
                                    
            
            
                | 193 |  |  |         y_val = [] | 
            
                                                                                                            
                            
            
                                    
            
            
                | 194 |  |  |         x_test = [] | 
            
                                                                                                            
                            
            
                                    
            
            
                | 195 |  |  |         y_test = [] | 
            
                                                                                                            
                            
            
                                    
            
            
                | 196 |  |  |         sliding_window(frame_length, step, x_train, y_train, y_trainlist, \ | 
            
                                                                                                            
                            
            
                                    
            
            
                | 197 |  |  |             x_trainlist) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 198 |  |  |         sliding_window(frame_length, step, x_val, y_val, y_vallist, x_vallist) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 199 |  |  |         sliding_window(frame_length, step, x_test, y_test, \ | 
            
                                                                                                            
                            
            
                                    
            
            
                | 200 |  |  |             y_testlist, x_testlist) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 201 |  |  |         numpify_and_store(x_train, y_train, 'X_train', 'y_train', \ | 
            
                                                                                                            
                            
            
                                    
            
            
                | 202 |  |  |         outdatapath, shuffle=True) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 203 |  |  |         numpify_and_store(x_val, y_val, 'X_val', 'y_val', outdatapath, \ | 
            
                                                                                                            
                            
            
                                    
            
            
                | 204 |  |  |             shuffle=False) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 205 |  |  |         numpify_and_store(x_test, y_test, 'X_test', 'y_test', outdatapath, \ | 
            
                                                                                                            
                            
            
                                    
            
            
                | 206 |  |  |             shuffle=False) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 207 |  |  |         print('Processed data succesfully stored in ' + outdatapath) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 208 |  |  |     return outdatapath | 
            
                                                                                                            
                            
            
                                    
            
            
                | 209 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 210 |  |  | def load_data(outputpath): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 211 |  |  |     ext = '.npy' | 
            
                                                                                                            
                            
            
                                    
            
            
                | 212 |  |  |     x_train = np.load(outputpath+'X_train'+ext) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 213 |  |  |     y_train_binary = np.load(outputpath+'y_train'+ext) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 214 |  |  |     x_val = np.load(outputpath+'X_val'+ext) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 215 |  |  |     y_val_binary = np.load(outputpath+'y_val'+ext) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 216 |  |  |     x_test = np.load(outputpath+'X_test'+ext) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 217 |  |  |     y_test_binary = np.load(outputpath+'y_test'+ext) | 
            
                                                                                                            
                                                                
            
                                    
            
            
                | 218 |  |  |     return x_train, y_train_binary, x_val, y_val_binary, x_test, y_test_binary | 
            
                                                        
            
                                    
            
            
                | 219 |  |  |  | 
            
                        
This check looks for invalid names for a range of different identifiers.
You can set regular expressions to which the identifiers must conform if the defaults do not match your requirements.
If your project includes a Pylint configuration file, the settings contained in that file take precedence.
To find out more about Pylint, please refer to their site.