1
|
|
|
""" |
2
|
|
|
Summary: |
3
|
|
|
This module provides the main functionality of mcfly: searching for an |
4
|
|
|
optimal model architecture. The work flow is as follows: |
5
|
|
|
Function generate_models from modelgen.py generates and compiles models. |
6
|
|
|
Function train_models_on_samples trains those models. |
7
|
|
|
Function plotTrainingProcess plots the training process. |
8
|
|
|
Function find_best_architecture is wrapper function that combines |
9
|
|
|
these steps. |
10
|
|
|
Example function calls can be found in the tutorial notebook |
11
|
|
|
'EvaluateDifferentModels.ipynb'. |
12
|
|
|
""" |
13
|
1 |
|
import numpy as np |
14
|
1 |
|
from matplotlib import pyplot as plt |
15
|
1 |
|
from . import modelgen |
16
|
1 |
|
from sklearn import neighbors, metrics |
17
|
1 |
|
import warnings |
18
|
1 |
|
import json |
19
|
1 |
|
import os |
20
|
|
|
|
21
|
|
|
|
22
|
1 |
|
def train_models_on_samples(X_train, y_train, X_val, y_val, models, |
23
|
|
|
nr_epochs=5, subset_size=100, verbose=True, |
24
|
|
|
outputfile=None): |
25
|
|
|
""" |
26
|
|
|
Given a list of compiled models, this function trains |
27
|
|
|
them all on a subset of the train data. If the given size of the subset is |
28
|
|
|
smaller then the size of the data, the complete data set is used. |
29
|
|
|
|
30
|
|
|
Parameters |
31
|
|
|
---------- |
32
|
|
|
X_train : numpy array of shape (num_samples, num_timesteps, num_channels) |
33
|
|
|
The input dataset for training |
34
|
|
|
y_train : numpy array of shape (num_samples, num_classes) |
35
|
|
|
The output classes for the train data, in binary format |
36
|
|
|
X_val : numpy array of shape (num_samples_val, num_timesteps, num_channels) |
37
|
|
|
The input dataset for validation |
38
|
|
|
y_val : numpy array of shape (num_samples_val, num_classes) |
39
|
|
|
The output classes for the validation data, in binary format |
40
|
|
|
models : list of model, params, modeltypes |
41
|
|
|
List of keras models to train |
42
|
|
|
nr_epochs : int, optional |
43
|
|
|
nr of epochs to use for training one model |
44
|
|
|
subset_size : |
45
|
|
|
The number of samples used from the complete train set |
46
|
|
|
verbose : bool, optional |
47
|
|
|
flag for displaying verbose output |
48
|
|
|
outputfile : str, optional |
49
|
|
|
File location to store the model results |
50
|
|
|
|
51
|
|
|
Returns |
52
|
|
|
---------- |
53
|
|
|
histories : list of Keras History objects |
54
|
|
|
train histories for all models |
55
|
|
|
val_accuracies : list of floats |
56
|
|
|
validation accuraracies of the models |
57
|
|
|
val_losses : list of floats |
58
|
|
|
validation losses of the models |
59
|
|
|
""" |
60
|
|
|
# if subset_size is smaller then X_train, this will work fine |
61
|
1 |
|
X_train_sub = X_train[:subset_size, :, :] |
62
|
1 |
|
y_train_sub = y_train[:subset_size, :] |
63
|
|
|
|
64
|
1 |
|
histories = [] |
65
|
1 |
|
val_accuracies = [] |
66
|
1 |
|
val_losses = [] |
67
|
1 |
|
for i, (model, params, model_types) in enumerate(models): |
68
|
1 |
|
if verbose: |
69
|
|
|
print('Training model %d' % i, model_types) |
70
|
1 |
|
history = model.fit(X_train_sub, y_train_sub, |
71
|
|
|
nb_epoch=nr_epochs, batch_size=20, |
72
|
|
|
# see comment on subsize_set |
73
|
|
|
validation_data=(X_val, y_val), |
74
|
|
|
verbose=verbose) |
75
|
1 |
|
histories.append(history) |
76
|
1 |
|
val_accuracies.append(history.history['val_acc'][-1]) |
77
|
1 |
|
val_losses.append(history.history['val_loss'][-1]) |
78
|
1 |
|
if outputfile is not None: |
79
|
|
|
store_train_hist_as_json(params, model_types, |
80
|
|
|
history.history, outputfile) |
81
|
1 |
|
return histories, val_accuracies, val_losses |
82
|
|
|
|
83
|
|
|
|
84
|
1 |
|
def store_train_hist_as_json(params, model_type, history, outputfile): |
85
|
|
|
""" |
86
|
|
|
This function stores the model parameters, the loss and accuracy history |
87
|
|
|
of one model in a JSON file. It appends the model information to the |
88
|
|
|
existing models in the file. |
89
|
|
|
|
90
|
|
|
Parameters |
91
|
|
|
---------- |
92
|
|
|
params : dict |
93
|
|
|
parameters for one model |
94
|
|
|
model_type : Keras model object |
95
|
|
|
Keras model object for one model |
96
|
|
|
history : dict |
97
|
|
|
training history from one model |
98
|
|
|
outputfile : str |
99
|
|
|
path where the json file needs to be stored |
100
|
|
|
""" |
101
|
1 |
|
jsondata = params.copy() |
102
|
1 |
|
for k in jsondata.keys(): |
103
|
1 |
|
if isinstance(jsondata[k], np.ndarray): |
104
|
1 |
|
jsondata[k] = jsondata[k].tolist() |
105
|
1 |
|
jsondata['train_acc'] = history['acc'] |
106
|
1 |
|
jsondata['train_loss'] = history['loss'] |
107
|
1 |
|
jsondata['val_acc'] = history['val_acc'] |
108
|
1 |
|
jsondata['val_loss'] = history['val_loss'] |
109
|
1 |
|
jsondata['modeltype'] = model_type |
110
|
1 |
|
jsondata['modeltype'] = model_type |
111
|
1 |
|
if os.path.isfile(outputfile): |
112
|
|
|
with open(outputfile, 'r') as outfile: |
113
|
|
|
previousdata = json.load(outfile) |
114
|
|
|
else: |
115
|
1 |
|
previousdata = [] |
116
|
1 |
|
previousdata.append(jsondata) |
117
|
1 |
|
with open(outputfile, 'w') as outfile: |
118
|
1 |
|
json.dump(previousdata, outfile, sort_keys=True, |
119
|
|
|
indent=4, ensure_ascii=False) |
120
|
|
|
|
121
|
|
|
|
122
|
1 |
|
def plotTrainingProcess(history, name='Model', ax=None): |
123
|
|
|
""" |
124
|
|
|
This function plots the loss and accuracy on the train and validation set, |
125
|
|
|
for each epoch in the history of one model. |
126
|
|
|
|
127
|
|
|
Parameters |
128
|
|
|
---------- |
129
|
|
|
history : keras History object |
130
|
|
|
The history object of the training process corresponding to one model |
131
|
|
|
name : str |
132
|
|
|
Name of the model, to display in the title |
133
|
|
|
ax : Axis, optional |
134
|
|
|
Specific axis to plot on |
135
|
|
|
|
136
|
|
|
""" |
137
|
|
|
if ax is None: |
138
|
|
|
fig, ax = plt.subplots() |
139
|
|
|
ax2 = ax.twinx() |
140
|
|
|
LN = len(history.history['val_loss']) |
141
|
|
|
val_loss, = ax.plot(range(LN), history.history['val_loss'], 'g--', |
142
|
|
|
label='validation loss') |
143
|
|
|
train_loss, = ax.plot(range(LN), history.history['loss'], 'g-', |
144
|
|
|
label='train loss') |
145
|
|
|
val_acc, = ax2.plot(range(LN), history.history['val_acc'], 'b--', |
146
|
|
|
label='validation accuracy') |
147
|
|
|
train_acc, = ax2.plot(range(LN), history.history['acc'], 'b-', |
148
|
|
|
label='train accuracy') |
149
|
|
|
ax.set_xlabel('epoch') |
150
|
|
|
ax.set_ylabel('loss', color='g') |
151
|
|
|
ax2.set_ylabel('accuracy', color='b') |
152
|
|
|
plt.legend(handles=[val_loss, train_loss, val_acc, train_acc], |
153
|
|
|
loc=2, bbox_to_anchor=(1.1, 1)) |
154
|
|
|
plt.title(name) |
155
|
|
|
|
156
|
|
|
|
157
|
1 |
|
def find_best_architecture(X_train, y_train, X_val, y_val, verbose=True, |
158
|
|
|
number_of_models=5, nr_epochs=5, subset_size=100, |
159
|
|
|
outputpath=None, **kwargs |
160
|
|
|
): |
161
|
|
|
""" |
162
|
|
|
Tries out a number of models on a subsample of the data, |
163
|
|
|
and outputs the best found architecture and hyperparameters. |
164
|
|
|
|
165
|
|
|
Parameters |
166
|
|
|
---------- |
167
|
|
|
X_train : numpy array |
168
|
|
|
The input dataset for training of shape |
169
|
|
|
(num_samples, num_timesteps, num_channels) |
170
|
|
|
y_train : numpy array |
171
|
|
|
The output classes for the train data, in binary format of shape |
172
|
|
|
(num_samples, num_classes) |
173
|
|
|
X_val : numpy array |
174
|
|
|
The input dataset for validation of shape |
175
|
|
|
(num_samples_val, num_timesteps, num_channels) |
176
|
|
|
y_val : numpy array |
177
|
|
|
The output classes for the validation data, in binary format of shape |
178
|
|
|
(num_samples_val, num_classes) |
179
|
|
|
verbose : bool, optional |
180
|
|
|
flag for displaying verbose output |
181
|
|
|
number_of_models : int, optiona |
182
|
|
|
The number of models to generate and test |
183
|
|
|
nr_epochs : int, optional |
184
|
|
|
The number of epochs that each model is trained |
185
|
|
|
subset_size : int, optional |
186
|
|
|
The size of the subset of the data that is used for finding |
187
|
|
|
the optimal architecture |
188
|
|
|
outputpath : str, optional |
189
|
|
|
File location to store the model results |
190
|
|
|
**kwargs: key-value parameters |
191
|
|
|
parameters for generating the models |
192
|
|
|
(see docstring for modelgen.generate_models) |
193
|
|
|
|
194
|
|
|
Returns |
195
|
|
|
---------- |
196
|
|
|
best_model : Keras model |
197
|
|
|
Best performing model, already trained on a small sample data set. |
198
|
|
|
best_params : dict |
199
|
|
|
Dictionary containing the hyperparameters for the best model |
200
|
|
|
best_model_type : str |
201
|
|
|
Type of the best model |
202
|
|
|
knn_acc : float |
203
|
|
|
accuaracy for kNN prediction on validation set |
204
|
|
|
""" |
205
|
1 |
|
models = modelgen.generate_models(X_train.shape, y_train.shape[1], |
206
|
|
|
number_of_models=number_of_models, |
207
|
|
|
**kwargs) |
208
|
1 |
|
histories, val_accuracies, val_losses = train_models_on_samples(X_train, |
209
|
|
|
y_train, |
210
|
|
|
X_val, |
211
|
|
|
y_val, |
212
|
|
|
models, |
213
|
|
|
nr_epochs, |
214
|
|
|
subset_size=subset_size, |
|
|
|
|
215
|
|
|
verbose=verbose, |
|
|
|
|
216
|
|
|
outputfile=outputpath) |
|
|
|
|
217
|
1 |
|
best_model_index = np.argmax(val_accuracies) |
218
|
1 |
|
best_model, best_params, best_model_type = models[best_model_index] |
219
|
1 |
|
knn_acc = kNN_accuracy( |
220
|
|
|
X_train[:subset_size, :, :], y_train[:subset_size, :], X_val, y_val) |
221
|
1 |
|
if verbose: |
222
|
|
|
for i in range(len(models)): # now one plot per model, ultimately we |
223
|
|
|
# may want all models in one plot to allow for direct comparison |
224
|
|
|
name = str(models[i][1]) |
225
|
|
|
plotTrainingProcess(histories[i], name) |
226
|
|
|
print('Best model: model ', best_model_index) |
227
|
|
|
print('Model type: ', best_model_type) |
228
|
|
|
print('Hyperparameters: ', best_params) |
229
|
|
|
print('Accuracy on validation set: ', val_accuracies[best_model_index]) |
230
|
|
|
print('Accuracy of kNN on validation set', knn_acc) |
231
|
|
|
|
232
|
1 |
|
if val_accuracies[best_model_index] < knn_acc: |
233
|
|
|
warnings.warn('Best model not better than kNN: ' + |
234
|
|
|
str(val_accuracies[best_model_index]) + ' vs ' + |
235
|
|
|
str(knn_acc) |
236
|
|
|
) |
237
|
1 |
|
return best_model, best_params, best_model_type, knn_acc |
238
|
|
|
|
239
|
|
|
|
240
|
1 |
|
def kNN_accuracy(X_train, y_train, X_val, y_val, k=1): |
241
|
|
|
""" |
242
|
|
|
Performs k-Neigherst Neighbors and returns the accuracy score. |
243
|
|
|
|
244
|
|
|
Parameters |
245
|
|
|
---------- |
246
|
|
|
X_train : numpy array |
247
|
|
|
Train set of shape (num_samples, num_timesteps, num_channels) |
248
|
|
|
y_train : numpy array |
249
|
|
|
Class labels for train set |
250
|
|
|
X_val : numpy array |
251
|
|
|
Validation set of shape (num_samples, num_timesteps, num_channels) |
252
|
|
|
y_val : numpy array |
253
|
|
|
Class labels for validation set |
254
|
|
|
k : int |
255
|
|
|
number of neighbors to use for classifying |
256
|
|
|
|
257
|
|
|
Returns |
258
|
|
|
------- |
259
|
|
|
accuracy: float |
260
|
|
|
accuracy score on the validation set |
261
|
|
|
""" |
262
|
1 |
|
num_samples, num_timesteps, num_channels = X_train.shape |
263
|
1 |
|
clf = neighbors.KNeighborsClassifier(k) |
264
|
1 |
|
clf.fit( |
265
|
|
|
X_train.reshape( |
266
|
|
|
num_samples, |
267
|
|
|
num_timesteps * |
268
|
|
|
num_channels), |
269
|
|
|
y_train) |
270
|
1 |
|
num_samples, num_timesteps, num_channels = X_val.shape |
271
|
1 |
|
val_predict = clf.predict( |
272
|
|
|
X_val.reshape(num_samples, |
273
|
|
|
num_timesteps * num_channels)) |
274
|
|
|
return metrics.accuracy_score(val_predict, y_val) |
275
|
|
|
|
This check looks for lines that are too long. You can specify the maximum line length.