1
|
|
|
""" |
2
|
|
|
Summary: |
3
|
|
|
Function fetch_and_preprocess from tutorial_pamap2.py helps to fetch and |
4
|
|
|
preproces the data. |
5
|
|
|
Example function calls in 'Tutorial mcfly on PAMAP2.ipynb' |
6
|
|
|
""" |
7
|
1 |
|
import numpy as np |
8
|
1 |
|
from numpy import genfromtxt |
9
|
1 |
|
import pandas as pd |
10
|
1 |
|
import matplotlib.pyplot as plt |
11
|
1 |
|
from os import listdir |
12
|
1 |
|
import os.path |
13
|
1 |
|
import zipfile |
14
|
1 |
|
import keras |
15
|
1 |
|
from keras.utils.np_utils import to_categorical |
16
|
1 |
|
import sys |
17
|
1 |
|
import six.moves.urllib as urllib |
18
|
|
|
|
19
|
|
|
|
20
|
1 |
|
def split_activities(labels, X, exclude_activities, borders=10 * 100): |
21
|
|
|
""" |
22
|
|
|
Splits up the data per activity and exclude activity=0. |
23
|
|
|
Also remove borders for each activity. |
24
|
|
|
Returns lists with subdatasets |
25
|
|
|
|
26
|
|
|
Parameters |
27
|
|
|
---------- |
28
|
|
|
labels : numpy array |
29
|
|
|
Activity labels |
30
|
|
|
X : numpy array |
31
|
|
|
Data points |
32
|
|
|
borders : int |
33
|
|
|
Nr of timesteps to remove from the borders of an activity |
34
|
|
|
exclude_activities : list or tuple |
35
|
|
|
activities to exclude from the |
36
|
|
|
|
37
|
|
|
Returns |
38
|
|
|
------- |
39
|
|
|
X_list |
40
|
|
|
y_list |
41
|
|
|
""" |
42
|
1 |
|
tot_len = len(labels) |
43
|
1 |
|
startpoints = np.where([1] + [labels[i] != labels[i - 1] |
44
|
|
|
for i in range(1, tot_len)])[0] |
45
|
1 |
|
endpoints = np.append(startpoints[1:] - 1, tot_len - 1) |
46
|
1 |
|
acts = [labels[s] for s, e in zip(startpoints, endpoints)] |
47
|
|
|
# Also split up the data, and only keep the non-zero activities |
48
|
1 |
|
xysplit = [(X[s + borders:e - borders + 1, :], a) |
49
|
|
|
for s, e, a in zip(startpoints, endpoints, acts) |
50
|
|
|
if a not in exclude_activities] |
51
|
1 |
|
xysplit = [(X, y) for X, y in xysplit if len(X) > 0] |
52
|
1 |
|
Xlist = [X for X, y in xysplit] |
53
|
1 |
|
ylist = [y for X, y in xysplit] |
54
|
1 |
|
return Xlist, ylist |
55
|
|
|
|
56
|
|
|
|
57
|
1 |
|
def sliding_window(frame_length, step, Xsampleslist, ysampleslist): |
58
|
|
|
""" |
59
|
|
|
Splits time series in ysampleslist and Xsampleslist |
60
|
|
|
into segments by applying a sliding overlapping window |
61
|
|
|
of size equal to frame_length with steps equal to step |
62
|
|
|
it does this for all the samples and appends all the output together. |
63
|
|
|
So, the participant distinction is not kept |
64
|
|
|
|
65
|
|
|
Parameters |
66
|
|
|
---------- |
67
|
|
|
frame_length : int |
68
|
|
|
Length of sliding window |
69
|
|
|
step : int |
70
|
|
|
Stepsize between windows |
71
|
|
|
Xsamples : list |
72
|
|
|
Existing list of window fragments |
73
|
|
|
ysamples : list |
74
|
|
|
Existing list of window fragments |
75
|
|
|
Xsampleslist : list |
76
|
|
|
Samples to take sliding windows from |
77
|
|
|
ysampleslist |
78
|
|
|
Samples to take sliding windows from |
79
|
|
|
|
80
|
|
|
""" |
81
|
1 |
|
Xsamples = [] |
82
|
1 |
|
ysamples = [] |
83
|
1 |
|
for j in range(len(Xsampleslist)): |
84
|
1 |
|
X = Xsampleslist[j] |
85
|
1 |
|
ybinary = ysampleslist[j] |
86
|
1 |
|
for i in range(0, X.shape[0] - frame_length, step): |
87
|
1 |
|
xsub = X[i:i + frame_length, :] |
88
|
1 |
|
ysub = ybinary |
89
|
1 |
|
Xsamples.append(xsub) |
90
|
1 |
|
ysamples.append(ysub) |
91
|
1 |
|
return Xsamples, ysamples |
92
|
|
|
|
93
|
|
|
|
94
|
1 |
|
def transform_y(y, mapclasses, nr_classes): |
95
|
|
|
""" |
96
|
|
|
Transforms y, a list with one sequence of A timesteps |
97
|
|
|
and B unique classes into a binary Numpy matrix of |
98
|
|
|
shape (A, B) |
99
|
|
|
|
100
|
|
|
Parameters |
101
|
|
|
---------- |
102
|
|
|
y : list or array |
103
|
|
|
List of classes |
104
|
|
|
mapclasses : dict |
105
|
|
|
dictionary that maps the classes to numbers |
106
|
|
|
nr_classes : int |
107
|
|
|
total number of classes |
108
|
|
|
""" |
109
|
1 |
|
ymapped = np.array([mapclasses[c] for c in y], dtype='int') |
110
|
1 |
|
ybinary = to_categorical(ymapped, nr_classes) |
111
|
1 |
|
return ybinary |
112
|
|
|
|
113
|
1 |
|
def get_header(): |
114
|
1 |
|
axes = ['x', 'y', 'z'] |
115
|
1 |
|
IMUsensor_columns = ['temperature'] + \ |
116
|
|
|
['acc_16g_' + i for i in axes] + \ |
117
|
|
|
['acc_6g_' + i for i in axes] + \ |
118
|
|
|
['gyroscope_' + i for i in axes] + \ |
119
|
|
|
['magnometer_' + i for i in axes] + \ |
120
|
|
|
['orientation_' + str(i) for i in range(4)] |
121
|
1 |
|
header = ["timestamp", "activityID", "heartrate"] + ["hand_" + s |
122
|
|
|
for s in IMUsensor_columns] \ |
|
|
|
|
123
|
|
|
+ ["chest_" + s for s in IMUsensor_columns] + ["ankle_" + s |
124
|
|
|
for s in IMUsensor_columns] |
|
|
|
|
125
|
1 |
|
return header |
126
|
|
|
|
127
|
1 |
|
def addheader(datasets): |
128
|
|
|
""" |
129
|
|
|
The columns of the pandas data frame are numbers |
130
|
|
|
this function adds the column labels |
131
|
|
|
|
132
|
|
|
Parameters |
133
|
|
|
---------- |
134
|
|
|
datasets : list |
135
|
|
|
List of pandas dataframes |
136
|
|
|
""" |
137
|
1 |
|
header = get_header() |
138
|
1 |
|
for i in range(0, len(datasets)): |
139
|
1 |
|
datasets[i].columns = header |
140
|
1 |
|
return datasets |
141
|
|
|
|
142
|
|
|
|
143
|
1 |
|
def numpify_and_store(X, y, X_name, y_name, outdatapath, shuffle=False): |
144
|
|
|
""" |
145
|
|
|
Converts python lists x 3D and y 1D into numpy arrays |
146
|
|
|
and stores the numpy array in directory outdatapath |
147
|
|
|
shuffle is optional and shuffles the samples |
148
|
|
|
|
149
|
|
|
Parameters |
150
|
|
|
---------- |
151
|
|
|
X : list |
152
|
|
|
list with data |
153
|
|
|
y : list |
154
|
|
|
list with data |
155
|
|
|
X_name : str |
156
|
|
|
name to store the x arrays |
157
|
|
|
y_name : str |
158
|
|
|
name to store the y arrays |
159
|
|
|
outdatapath : str |
160
|
|
|
path to the directory to store the data |
161
|
|
|
shuffle : bool |
162
|
|
|
whether to shuffle the data before storing |
163
|
|
|
""" |
164
|
1 |
|
X = np.array(X) |
165
|
1 |
|
y = np.array(y) |
166
|
|
|
# Shuffle the train set |
167
|
1 |
|
if shuffle is True: |
168
|
1 |
|
np.random.seed(123) |
169
|
1 |
|
neworder = np.random.permutation(X.shape[0]) |
170
|
1 |
|
X = X[neworder, :, :] |
171
|
1 |
|
y = y[neworder, :] |
172
|
|
|
# Save binary file |
173
|
1 |
|
xpath = os.path.join(outdatapath, X_name) |
174
|
1 |
|
ypath = os.path.join(outdatapath, y_name) |
175
|
1 |
|
np.save(xpath, X) |
176
|
1 |
|
np.save(ypath, y) |
177
|
1 |
|
print('Stored ' + xpath, y_name) |
178
|
|
|
|
179
|
|
|
|
180
|
1 |
|
def fetch_data(directory_to_extract_to): |
181
|
|
|
""" |
182
|
|
|
Fetch the data and extract the contents of the zip file |
183
|
|
|
to the directory_to_extract_to. |
184
|
|
|
First check whether this was done before, if yes, then skip |
185
|
|
|
|
186
|
|
|
Parameters |
187
|
|
|
---------- |
188
|
|
|
directory_to_extract_to : str |
189
|
|
|
directory to create subfolder 'PAMAP2' |
190
|
|
|
|
191
|
|
|
Returns |
192
|
|
|
------- |
193
|
|
|
targetdir: str |
194
|
|
|
directory where the data is extracted |
195
|
|
|
""" |
196
|
|
|
targetdir = os.path.join(directory_to_extract_to, 'PAMAP2/') |
197
|
|
|
if os.path.exists(targetdir): |
198
|
|
|
print('Data previously downloaded and stored in ' + targetdir) |
199
|
|
|
else: |
200
|
|
|
os.makedirs(targetdir) # create target directory |
201
|
|
|
# Download the PAMAP2 data, this is 688 Mb |
202
|
|
|
path_to_zip_file = directory_to_extract_to + '/PAMAP2_Dataset.zip' |
203
|
|
|
test_file_exist = os.path.isfile(path_to_zip_file) |
204
|
|
|
if test_file_exist is False: |
205
|
|
|
url = str('https://archive.ics.uci.edu/ml/' + |
206
|
|
|
'machine-learning-databases/00231/PAMAP2_Dataset.zip') |
207
|
|
|
# retrieve data from url |
208
|
|
|
local_fn, headers = urllib.request.urlretrieve(url, |
209
|
|
|
filename=path_to_zip_file) |
|
|
|
|
210
|
|
|
print('Download complete and stored in: ' + path_to_zip_file) |
211
|
|
|
else: |
212
|
|
|
print('The data was previously downloaded and stored in ' + |
213
|
|
|
path_to_zip_file) |
214
|
|
|
# unzip |
215
|
|
|
with zipfile.ZipFile(path_to_zip_file, "r") as zip_ref: |
216
|
|
|
zip_ref.extractall(targetdir) |
217
|
|
|
return targetdir |
218
|
|
|
|
219
|
|
|
|
220
|
1 |
|
def map_class(datasets_filled): |
221
|
|
|
ysetall = [set(np.array(data.activityID)) - set([0]) |
222
|
|
|
for data in datasets_filled] |
223
|
|
|
classlabels = list(set.union(*[set(y) for y in ysetall])) |
224
|
|
|
nr_classes = len(classlabels) |
225
|
|
|
mapclasses = {classlabels[i]: i for i in range(len(classlabels))} |
226
|
|
|
return classlabels, nr_classes, mapclasses |
227
|
|
|
|
228
|
|
|
|
229
|
1 |
|
def split_data(Xlists, ybinarylists, indices): |
230
|
|
|
""" Function takes subset from list given indices |
231
|
|
|
|
232
|
|
|
Parameters |
233
|
|
|
---------- |
234
|
|
|
Xlists: tuple |
235
|
|
|
tuple (samples) of lists (windows) of numpy-arrays (time, variable) |
236
|
|
|
ybinarylist : |
237
|
|
|
list (samples) of numpy-arrays (window, class) |
238
|
|
|
indices : |
239
|
|
|
indices of the slice of data (samples) to be taken |
240
|
|
|
|
241
|
|
|
Returns |
242
|
|
|
------- |
243
|
|
|
x_setlist : list |
244
|
|
|
list (windows across samples) of numpy-arrays (time, variable) |
245
|
|
|
y_setlist: list |
246
|
|
|
list (windows across samples) of numpy-arrays (class, ) |
247
|
|
|
""" |
248
|
1 |
|
tty = str(type(indices)) |
249
|
|
|
# or statement in next line is to account for python2 and python3 |
250
|
|
|
# difference |
251
|
1 |
|
if tty == "<class 'slice'>" or tty == "<type 'slice'>": |
252
|
1 |
|
x_setlist = [X for Xlist in Xlists[indices] for X in Xlist] |
253
|
1 |
|
y_setlist = [y for ylist in ybinarylists[indices] for y in ylist] |
254
|
|
|
else: |
255
|
|
|
x_setlist = [X for X in Xlists[indices]] |
256
|
|
|
y_setlist = [y for y in ybinarylists[indices]] |
257
|
1 |
|
return x_setlist, y_setlist |
258
|
|
|
|
259
|
1 |
|
def split_data_random(X, y, val_size, test_size): |
260
|
|
|
X = np.array(X) |
261
|
|
|
y = np.array(y) |
262
|
|
|
size = len(X) |
263
|
|
|
train_size = size - val_size - test_size |
264
|
|
|
indices = np.random.permutation(size) |
265
|
|
|
X_train = X[indices[:train_size]] |
266
|
|
|
y_train = y[indices[:train_size]] |
267
|
|
|
X_val = X[indices[train_size:train_size+val_size]] |
268
|
|
|
y_val = y[indices[train_size:train_size+val_size]] |
269
|
|
|
X_test = X[indices[train_size+val_size:]] |
270
|
|
|
y_test = y[indices[train_size+val_size:]] |
271
|
|
|
return X_train, y_train, X_val, y_val, X_test, y_test |
272
|
|
|
|
273
|
1 |
|
def preprocess(targetdir, outdatapath, columns_to_use, exclude_activities, fold, |
|
|
|
|
274
|
|
|
val_test_size=None): |
275
|
|
|
""" Function to preprocess the PAMAP2 data after it is fetched |
276
|
|
|
|
277
|
|
|
Parameters |
278
|
|
|
---------- |
279
|
|
|
targetdir : str |
280
|
|
|
subdirectory of directory_to_extract_to, targetdir |
281
|
|
|
is defined by function fetch_data |
282
|
|
|
outdatapath : str |
283
|
|
|
a subdirectory of directory_to_extract_to, outdatapath |
284
|
|
|
is the direcotry where the Numpy output will be stored. |
285
|
|
|
columns_to_use : list |
286
|
|
|
list of column names to use |
287
|
|
|
exclude_activities : list or tuple |
288
|
|
|
activities to exclude from the |
289
|
|
|
fold : boolean |
290
|
|
|
Whether to store each fold seperately ('False' creates |
291
|
|
|
Train, Test and Validation sets) |
292
|
|
|
|
293
|
|
|
Returns |
294
|
|
|
------- |
295
|
|
|
None |
296
|
|
|
""" |
297
|
|
|
datadir = targetdir + '/PAMAP2_Dataset/Protocol' |
298
|
|
|
filenames = listdir(datadir) |
299
|
|
|
filenames.sort() |
300
|
|
|
print('Start pre-processing all ' + str(len(filenames)) + ' files...') |
301
|
|
|
# load the files and put them in a list of pandas dataframes: |
302
|
|
|
datasets = [pd.read_csv(datadir + '/' + fn, header=None, sep=' ') |
303
|
|
|
for fn in filenames] |
304
|
|
|
datasets = addheader(datasets) # add headers to the datasets |
305
|
|
|
# Interpolate dataset to get same sample rate between channels |
306
|
|
|
datasets_filled = [d.interpolate() for d in datasets] |
307
|
|
|
# Create mapping for class labels |
308
|
|
|
classlabels, nr_classes, mapclasses = map_class(datasets_filled) |
309
|
|
|
# Create input (x) and output (y) sets |
310
|
|
|
xall = [np.array(data[columns_to_use]) for data in datasets_filled] |
311
|
|
|
yall = [np.array(data.activityID) for data in datasets_filled] |
312
|
|
|
xylists = [split_activities(y, x, exclude_activities) for x, y in zip(xall, yall)] |
|
|
|
|
313
|
|
|
Xlists, ylists = zip(*xylists) |
314
|
|
|
ybinarylists = [transform_y(y, mapclasses, nr_classes) for y in ylists] |
315
|
|
|
frame_length = int(5.12 * 100) |
316
|
|
|
step = 1 * 100 |
317
|
|
|
if not fold: |
318
|
|
|
if val_test_size is None: |
319
|
|
|
# Split in train, test and val |
320
|
|
|
x_vallist, y_vallist = split_data(Xlists, ybinarylists, indices=6) |
321
|
|
|
test_range = slice(7, len(datasets_filled)) |
322
|
|
|
x_testlist, y_testlist = split_data(Xlists, ybinarylists, test_range) |
|
|
|
|
323
|
|
|
x_trainlist, y_trainlist = split_data(Xlists, ybinarylists, |
324
|
|
|
indices=slice(0, 6)) |
325
|
|
|
# Take sliding-window frames, target is label of last time step, |
326
|
|
|
# and store as numpy file |
327
|
|
|
x_train, y_train = sliding_window(frame_length, step, x_trainlist, |
328
|
|
|
y_trainlist) |
329
|
|
|
x_val, y_val = sliding_window(frame_length, step, x_vallist, |
330
|
|
|
y_vallist) |
331
|
|
|
x_test, y_test = sliding_window(frame_length, step, x_testlist, |
332
|
|
|
y_testlist) |
333
|
|
|
|
334
|
|
|
else: |
335
|
|
|
val_size, test_size = val_test_size |
336
|
|
|
X_list, y_list = split_data(Xlists, ybinarylists, |
337
|
|
|
slice(0, len(datasets_filled))) |
338
|
|
|
X, y = sliding_window(frame_length, step, X_list, |
339
|
|
|
y_list) |
340
|
|
|
x_train, y_train, x_val, y_val, x_test, y_test = split_data_random(X, y, val_size, test_size) |
|
|
|
|
341
|
|
|
|
342
|
|
|
|
343
|
|
|
numpify_and_store(x_train, y_train, X_name='X_train', y_name='y_train', |
344
|
|
|
outdatapath=outdatapath, shuffle=True) |
345
|
|
|
numpify_and_store(x_val, y_val, X_name='X_val', y_name='y_val', |
346
|
|
|
outdatapath=outdatapath, shuffle=False) |
347
|
|
|
numpify_and_store(x_test, y_test, X_name='X_test', y_name='y_test', |
348
|
|
|
outdatapath=outdatapath, shuffle=False) |
349
|
|
|
else : |
|
|
|
|
350
|
|
|
for i in range(len(Xlists)): |
351
|
|
|
X_i, y_i = split_data(Xlists, ybinarylists, i) |
352
|
|
|
X, y = sliding_window(frame_length, step, X_i, |
353
|
|
|
y_i) |
354
|
|
|
numpify_and_store(X, y, X_name='X_'+str(i), y_name='y_'+str(i), |
355
|
|
|
outdatapath=outdatapath, shuffle=True) |
356
|
|
|
|
357
|
|
|
|
358
|
|
|
print('Processed data succesfully stored in ' + outdatapath) |
359
|
|
|
return None |
360
|
|
|
|
361
|
|
|
|
362
|
1 |
|
def fetch_and_preprocess(directory_to_extract_to, columns_to_use=None, output_dir='slidingwindow512cleaned', exclude_activities=[0], fold=False, |
|
|
|
|
363
|
|
|
val_test_size=None): |
364
|
|
|
""" |
365
|
|
|
High level function to fetch_and_preprocess the PAMAP2 dataset |
366
|
|
|
|
367
|
|
|
Parameters |
368
|
|
|
---------- |
369
|
|
|
directory_to_extract_to : str |
370
|
|
|
the directory where the data will be stored |
371
|
|
|
columns_to_use : list |
372
|
|
|
the columns to use |
373
|
|
|
ouptput_dir : str |
374
|
|
|
name of the directory to write the outputdata to |
375
|
|
|
exclude_activities : list or tuple |
376
|
|
|
activities to exclude from the |
377
|
|
|
fold : boolean |
378
|
|
|
Whether to store each fold seperately ('False' creates |
379
|
|
|
Train, Test and Validation sets) |
380
|
|
|
|
381
|
|
|
Returns |
382
|
|
|
------- |
383
|
|
|
outdatapath: str |
384
|
|
|
The directory in which the numpy files are stored |
385
|
|
|
""" |
386
|
|
|
if columns_to_use is None: |
387
|
|
|
columns_to_use = ['hand_acc_16g_x', 'hand_acc_16g_y', 'hand_acc_16g_z', |
388
|
|
|
'ankle_acc_16g_x', 'ankle_acc_16g_y', 'ankle_acc_16g_z', |
|
|
|
|
389
|
|
|
'chest_acc_16g_x', 'chest_acc_16g_y', 'chest_acc_16g_z'] |
|
|
|
|
390
|
|
|
targetdir = fetch_data(directory_to_extract_to) |
391
|
|
|
outdatapath = os.path.join(targetdir, 'PAMAP2_Dataset/', output_dir) |
392
|
|
|
if not os.path.exists(outdatapath): |
393
|
|
|
os.makedirs(outdatapath) |
394
|
|
|
# if os.path.isfile(outdatapath + 'x_train.npy'): |
395
|
|
|
# print('Data previously pre-processed and np-files saved to ' + |
396
|
|
|
# outdatapath) |
397
|
|
|
# else: |
398
|
|
|
preprocess(targetdir, outdatapath, columns_to_use, exclude_activities, fold, val_test_size) |
|
|
|
|
399
|
|
|
return outdatapath |
400
|
|
|
|
401
|
|
|
|
402
|
1 |
|
def load_data(outputpath): |
403
|
|
|
""" Function to load the numpy data as stored in directory |
404
|
|
|
outputpath. |
405
|
|
|
|
406
|
|
|
Parameters |
407
|
|
|
---------- |
408
|
|
|
outputpath : str |
409
|
|
|
directory where the numpy files are stored |
410
|
|
|
|
411
|
|
|
Returns |
412
|
|
|
------- |
413
|
|
|
x_train |
414
|
|
|
y_train_binary |
415
|
|
|
x_val |
416
|
|
|
y_val_binary |
417
|
|
|
x_test |
418
|
|
|
y_test_binary |
419
|
|
|
""" |
420
|
|
|
ext = '.npy' |
421
|
|
|
x_train = np.load(os.path.join(outputpath, 'X_train' + ext)) |
422
|
|
|
y_train_binary = np.load(os.path.join(outputpath, 'y_train' + ext)) |
423
|
|
|
x_val = np.load(os.path.join(outputpath, 'X_val' + ext)) |
424
|
|
|
y_val_binary = np.load(os.path.join(outputpath, 'y_val' + ext)) |
|
|
|
|
425
|
|
|
x_test = np.load(os.path.join(outputpath, 'X_test' + ext)) |
426
|
|
|
y_test_binary = np.load(os.path.join(outputpath, 'y_test' + ext)) |
|
|
|
|
427
|
|
|
return x_train, y_train_binary, x_val, y_val_binary, x_test, y_test_binary |
428
|
|
|
|
This check looks for lines that are too long. You can specify the maximum line length.