1
|
1 |
|
from keras.models import Sequential |
2
|
1 |
|
from keras.layers import Dense, Activation, Convolution1D, Lambda, \ |
3
|
|
|
Convolution2D, Flatten, \ |
4
|
|
|
Reshape, LSTM, Dropout, TimeDistributed, BatchNormalization |
5
|
1 |
|
from keras.regularizers import l2 |
6
|
1 |
|
from keras.optimizers import Adam |
7
|
1 |
|
import numpy as np |
8
|
|
|
|
9
|
|
|
|
10
|
1 |
|
def generate_models( |
11
|
|
|
x_shape, number_of_classes, number_of_models=5, metrics=['accuracy'], |
12
|
|
|
model_type=None, |
13
|
|
|
cnn_min_layers=1, cnn_max_layers=10, |
14
|
|
|
cnn_min_filters=10, cnn_max_filters=100, |
15
|
|
|
cnn_min_fc_nodes=10, cnn_max_fc_nodes=2000, |
16
|
|
|
deepconvlstm_min_conv_layers=1, deepconvlstm_max_conv_layers=10, |
17
|
|
|
deepconvlstm_min_conv_filters=10, deepconvlstm_max_conv_filters=100, |
18
|
|
|
deepconvlstm_min_lstm_layers=1, deepconvlstm_max_lstm_layers=5, |
19
|
|
|
deepconvlstm_min_lstm_dims=10, deepconvlstm_max_lstm_dims=100, |
20
|
|
|
low_lr=1, high_lr=4, low_reg=1, high_reg=4 |
21
|
|
|
): |
22
|
|
|
""" |
23
|
|
|
Generate one or multiple untrained Keras models with random hyperparameters. |
|
|
|
|
24
|
|
|
|
25
|
|
|
Parameters |
26
|
|
|
---------- |
27
|
|
|
x_shape : tuple |
28
|
|
|
Shape of the input dataset: (num_samples, num_timesteps, num_channels) |
29
|
|
|
number_of_classes : int |
30
|
|
|
Number of classes for classification task |
31
|
|
|
number_of_models : int |
32
|
|
|
Number of models to generate |
33
|
|
|
metrics : list |
34
|
|
|
Metrics to calculate on the validation set. |
35
|
|
|
See https://keras.io/metrics/ for possible values. |
36
|
|
|
model_type : str, optional |
37
|
|
|
Type of model to build: 'CNN' or 'DeepConvLSTM'. |
38
|
|
|
Default option None generates both models. |
39
|
|
|
cnn_min_layers : int |
40
|
|
|
minimum of Conv layers in CNN model |
41
|
|
|
cnn_max_layers : int |
42
|
|
|
maximum of Conv layers in CNN model |
43
|
|
|
cnn_min_filters : int |
44
|
|
|
minimum number of filters per Conv layer in CNN model |
45
|
|
|
cnn_max_filters : int |
46
|
|
|
maximum number of filters per Conv layer in CNN model |
47
|
|
|
cnn_min_fc_nodes : int |
48
|
|
|
minimum number of hidden nodes per Dense layer in CNN model |
49
|
|
|
cnn_max_fc_nodes : int |
50
|
|
|
maximum number of hidden nodes per Dense layer in CNN model |
51
|
|
|
deepconvlstm_min_conv_layers : int |
52
|
|
|
minimum number of Conv layers in DeepConvLSTM model |
53
|
|
|
deepconvlstm_max_conv_layers : int |
54
|
|
|
maximum number of Conv layers in DeepConvLSTM model |
55
|
|
|
deepconvlstm_min_conv_filters : int |
56
|
|
|
minimum number of filters per Conv layer in DeepConvLSTM model |
57
|
|
|
deepconvlstm_max_conv_filters : int |
58
|
|
|
maximum number of filters per Conv layer in DeepConvLSTM model |
59
|
|
|
deepconvlstm_min_lstm_layers : int |
60
|
|
|
minimum number of Conv layers in DeepConvLSTM model |
61
|
|
|
deepconvlstm_max_lstm_layers : int |
62
|
|
|
maximum number of Conv layers in DeepConvLSTM model |
63
|
|
|
deepconvlstm_min_lstm_dims : int |
64
|
|
|
minimum number of hidden nodes per LSTM layer in DeepConvLSTM model |
65
|
|
|
deepconvlstm_max_lstm_dims : int |
66
|
|
|
maximum number of hidden nodes per LSTM layer in DeepConvLSTM model |
67
|
|
|
low_lr : float |
68
|
|
|
minimum of log range for learning rate: learning rate is sampled |
69
|
|
|
between `10**(-low_reg)` and `10**(-high_reg)` |
70
|
|
|
high_lr : float |
71
|
|
|
maximum of log range for learning rate: learning rate is sampled |
72
|
|
|
between `10**(-low_reg)` and `10**(-high_reg)` |
73
|
|
|
low_reg : float |
74
|
|
|
minimum of log range for regularization rate: regularization rate is |
75
|
|
|
sampled between `10**(-low_reg)` and `10**(-high_reg)` |
76
|
|
|
high_reg : float |
77
|
|
|
maximum of log range for regularization rate: regularization rate is |
78
|
|
|
sampled between `10**(-low_reg)` and `10**(-high_reg)` |
79
|
|
|
|
80
|
|
|
Returns |
81
|
|
|
------- |
82
|
|
|
models : list |
83
|
|
|
List of compiled models |
84
|
|
|
""" |
85
|
1 |
|
models = [] |
86
|
1 |
|
for _ in range(0, number_of_models): |
87
|
1 |
|
if model_type is None: # random model choice: |
88
|
1 |
|
current_model_type = 'CNN' if np.random.random( |
89
|
|
|
) < 0.5 else 'DeepConvLSTM' |
90
|
|
|
else: # user-defined model choice: |
91
|
|
|
current_model_type = model_type |
92
|
1 |
|
generate_model = None |
93
|
1 |
|
if current_model_type == 'CNN': |
94
|
1 |
|
generate_model = generate_CNN_model # generate_model is a function |
95
|
1 |
|
hyperparameters = generate_CNN_hyperparameter_set( |
96
|
|
|
min_layers=cnn_min_layers, max_layers=cnn_max_layers, |
97
|
|
|
min_filters=cnn_min_filters, max_filters=cnn_max_filters, |
98
|
|
|
min_fc_nodes=cnn_min_fc_nodes, max_fc_nodes=cnn_max_fc_nodes, |
99
|
|
|
low_lr=low_lr, high_lr=high_lr, low_reg=low_reg, |
100
|
|
|
high_reg=high_reg) |
101
|
1 |
|
if current_model_type == 'DeepConvLSTM': |
102
|
1 |
|
generate_model = generate_DeepConvLSTM_model |
103
|
1 |
|
hyperparameters = generate_DeepConvLSTM_hyperparameter_set( |
104
|
|
|
min_conv_layers=deepconvlstm_min_conv_layers, |
105
|
|
|
max_conv_layers=deepconvlstm_max_conv_layers, |
106
|
|
|
min_conv_filters=deepconvlstm_min_conv_filters, |
107
|
|
|
max_conv_filters=deepconvlstm_max_conv_filters, |
108
|
|
|
min_lstm_layers=deepconvlstm_min_lstm_layers, |
109
|
|
|
max_lstm_layers=deepconvlstm_max_lstm_layers, |
110
|
|
|
min_lstm_dims=deepconvlstm_min_lstm_dims, |
111
|
|
|
max_lstm_dims=deepconvlstm_max_lstm_dims, |
112
|
|
|
low_lr=low_lr, high_lr=high_lr, low_reg=low_reg, |
113
|
|
|
high_reg=high_reg) |
114
|
1 |
|
models.append( |
115
|
|
|
(generate_model(x_shape, number_of_classes, metrics=metrics, **hyperparameters), |
|
|
|
|
116
|
|
|
hyperparameters, current_model_type)) |
117
|
1 |
|
return models |
118
|
|
|
|
119
|
|
|
|
120
|
1 |
|
def generate_DeepConvLSTM_model( |
121
|
|
|
x_shape, class_number, filters, lstm_dims, learning_rate=0.01, |
122
|
|
|
regularization_rate=0.01, metrics=['accuracy']): |
123
|
|
|
""" |
124
|
|
|
Generate a model with convolution and LSTM layers. |
125
|
|
|
See Ordonez et al., 2016, http://dx.doi.org/10.3390/s16010115 |
126
|
|
|
|
127
|
|
|
Parameters |
128
|
|
|
---------- |
129
|
|
|
x_shape : tuple |
130
|
|
|
Shape of the input dataset: (num_samples, num_timesteps, num_channels) |
131
|
|
|
class_number : int |
132
|
|
|
Number of classes for classification task |
133
|
|
|
filters : list of ints |
134
|
|
|
number of filters for each convolutional layer |
135
|
|
|
lstm_dims : list of ints |
136
|
|
|
number of hidden nodes for each LSTM layer |
137
|
|
|
learning_rate : float |
138
|
|
|
learning rate |
139
|
|
|
regularization_rate : float |
140
|
|
|
regularization rate |
141
|
|
|
metrics : list |
142
|
|
|
Metrics to calculate on the validation set. |
143
|
|
|
See https://keras.io/metrics/ for possible values. |
144
|
|
|
|
145
|
|
|
Returns |
146
|
|
|
------- |
147
|
|
|
model : Keras model |
148
|
|
|
The compiled Keras model |
149
|
|
|
""" |
150
|
1 |
|
dim_length = x_shape[1] # number of samples in a time series |
151
|
1 |
|
dim_channels = x_shape[2] # number of channels |
152
|
1 |
|
output_dim = class_number # number of classes |
153
|
1 |
|
weightinit = 'lecun_uniform' # weight initialization |
154
|
1 |
|
model = Sequential() # initialize model |
155
|
1 |
|
model.add(BatchNormalization(input_shape=(dim_length, dim_channels))) |
156
|
|
|
# reshape a 2 dimensional array per file/person/object into a |
157
|
|
|
# 3 dimensional array |
158
|
1 |
|
model.add( |
159
|
|
|
Reshape(target_shape=(dim_length, dim_channels, 1))) |
160
|
1 |
|
for filt in filters: |
161
|
|
|
# filt: number of filters used in a layer |
162
|
|
|
# filters: vector of filt values |
163
|
1 |
|
model.add( |
164
|
|
|
Convolution2D(filt, kernel_size=(3, 1), padding='same', |
165
|
|
|
kernel_regularizer=l2(regularization_rate), |
166
|
|
|
kernel_initializer=weightinit)) |
167
|
1 |
|
model.add(BatchNormalization()) |
168
|
1 |
|
model.add(Activation('relu')) |
169
|
|
|
# reshape 3 dimensional array back into a 2 dimensional array, |
170
|
|
|
# but now with more dept as we have the the filters for each channel |
171
|
1 |
|
model.add(Reshape(target_shape=(dim_length, filters[-1] * dim_channels))) |
172
|
|
|
|
173
|
1 |
|
for lstm_dim in lstm_dims: |
174
|
1 |
|
model.add(LSTM(units=lstm_dim, return_sequences=True, |
175
|
|
|
activation='tanh')) |
176
|
|
|
|
177
|
1 |
|
model.add(Dropout(0.5)) # dropout before the dense layer |
178
|
|
|
# set up final dense layer such that every timestamp is given one |
179
|
|
|
# classification |
180
|
1 |
|
model.add( |
181
|
|
|
TimeDistributed( |
182
|
|
|
Dense(units=output_dim, kernel_regularizer=l2(regularization_rate)))) |
|
|
|
|
183
|
1 |
|
model.add(Activation("softmax")) |
184
|
|
|
# Final classification layer - per timestep |
185
|
1 |
|
model.add(Lambda(lambda x: x[:, -1, :], output_shape=[output_dim])) |
186
|
|
|
|
187
|
1 |
|
model.compile(loss='categorical_crossentropy', |
188
|
|
|
optimizer=Adam(lr=learning_rate), |
189
|
|
|
metrics=metrics) |
190
|
|
|
|
191
|
1 |
|
return model |
192
|
|
|
|
193
|
|
|
|
194
|
1 |
|
def generate_CNN_model(x_shape, class_number, filters, fc_hidden_nodes, |
195
|
|
|
learning_rate=0.01, regularization_rate=0.01, |
196
|
|
|
metrics=['accuracy']): |
197
|
|
|
""" |
198
|
|
|
Generate a convolutional neural network (CNN) model. |
199
|
|
|
|
200
|
|
|
The compiled Keras model is returned. |
201
|
|
|
|
202
|
|
|
Parameters |
203
|
|
|
---------- |
204
|
|
|
x_shape : tuple |
205
|
|
|
Shape of the input dataset: (num_samples, num_timesteps, num_channels) |
206
|
|
|
class_number : int |
207
|
|
|
Number of classes for classification task |
208
|
|
|
filters : list of ints |
209
|
|
|
number of filters for each convolutional layer |
210
|
|
|
fc_hidden_nodes : int |
211
|
|
|
number of hidden nodes for the hidden dense layer |
212
|
|
|
learning_rate : float |
213
|
|
|
learning rate |
214
|
|
|
regularization_rate : float |
215
|
|
|
regularization rate |
216
|
|
|
metrics : list |
217
|
|
|
Metrics to calculate on the validation set. |
218
|
|
|
See https://keras.io/metrics/ for possible values. |
219
|
|
|
|
220
|
|
|
Returns |
221
|
|
|
------- |
222
|
|
|
model : Keras model |
223
|
|
|
The compiled Keras model |
224
|
|
|
""" |
225
|
1 |
|
dim_length = x_shape[1] # number of samples in a time series |
226
|
1 |
|
dim_channels = x_shape[2] # number of channels |
227
|
1 |
|
outputdim = class_number # number of classes |
228
|
1 |
|
weightinit = 'lecun_uniform' # weight initialization |
229
|
1 |
|
model = Sequential() |
230
|
1 |
|
model.add( |
231
|
|
|
BatchNormalization( |
232
|
|
|
input_shape=( |
233
|
|
|
dim_length, |
234
|
|
|
dim_channels))) |
235
|
1 |
|
for filter_number in filters: |
236
|
1 |
|
model.add(Convolution1D(filter_number, kernel_size=3, padding='same', |
237
|
|
|
kernel_regularizer=l2(regularization_rate), |
238
|
|
|
kernel_initializer=weightinit)) |
239
|
1 |
|
model.add(BatchNormalization()) |
240
|
1 |
|
model.add(Activation('relu')) |
241
|
1 |
|
model.add(Flatten()) |
242
|
1 |
|
model.add(Dense(units=fc_hidden_nodes, |
243
|
|
|
kernel_regularizer=l2(regularization_rate), |
244
|
|
|
kernel_initializer=weightinit)) # Fully connected layer |
245
|
1 |
|
model.add(Activation('relu')) # Relu activation |
246
|
1 |
|
model.add(Dense(units=outputdim, kernel_initializer=weightinit)) |
247
|
1 |
|
model.add(BatchNormalization()) |
248
|
1 |
|
model.add(Activation("softmax")) # Final classification layer |
249
|
|
|
|
250
|
1 |
|
model.compile(loss='categorical_crossentropy', |
251
|
|
|
optimizer=Adam(lr=learning_rate), |
252
|
|
|
metrics=metrics) |
253
|
|
|
|
254
|
1 |
|
return model |
255
|
|
|
|
256
|
|
|
|
257
|
1 |
|
def generate_CNN_hyperparameter_set(min_layers=1, max_layers=10, |
258
|
|
|
min_filters=10, max_filters=100, |
259
|
|
|
min_fc_nodes=10, max_fc_nodes=2000, |
260
|
|
|
low_lr=1, high_lr=4, low_reg=1, |
261
|
|
|
high_reg=4): |
262
|
|
|
""" Generate a hyperparameter set that define a CNN model. |
263
|
|
|
|
264
|
|
|
Parameters |
265
|
|
|
---------- |
266
|
|
|
min_layers : int |
267
|
|
|
minimum of Conv layers |
268
|
|
|
max_layers : int |
269
|
|
|
maximum of Conv layers |
270
|
|
|
min_filters : int |
271
|
|
|
minimum number of filters per Conv layer |
272
|
|
|
max_filters : int |
273
|
|
|
maximum number of filters per Conv layer |
274
|
|
|
min_fc_nodes : int |
275
|
|
|
minimum number of hidden nodes per Dense layer |
276
|
|
|
max_fc_nodes : int |
277
|
|
|
maximum number of hidden nodes per Dense layer |
278
|
|
|
low_lr : float |
279
|
|
|
minimum of log range for learning rate: learning rate is sampled |
280
|
|
|
between `10**(-low_reg)` and `10**(-high_reg)` |
281
|
|
|
high_lr : float |
282
|
|
|
maximum of log range for learning rate: learning rate is sampled |
283
|
|
|
between `10**(-low_reg)` and `10**(-high_reg)` |
284
|
|
|
low_reg : float |
285
|
|
|
minimum of log range for regularization rate: regularization rate is |
286
|
|
|
sampled between `10**(-low_reg)` and `10**(-high_reg)` |
287
|
|
|
high_reg : float |
288
|
|
|
maximum of log range for regularization rate: regularization rate is |
289
|
|
|
sampled between `10**(-low_reg)` and `10**(-high_reg)` |
290
|
|
|
|
291
|
|
|
Returns |
292
|
|
|
---------- |
293
|
|
|
hyperparameters : dict |
294
|
|
|
parameters for a CNN model |
295
|
|
|
""" |
296
|
1 |
|
hyperparameters = generate_base_hyper_parameter_set( |
297
|
|
|
low_lr, high_lr, low_reg, high_reg) |
298
|
1 |
|
number_of_layers = np.random.randint(min_layers, max_layers + 1) |
299
|
1 |
|
hyperparameters['filters'] = np.random.randint( |
300
|
|
|
min_filters, max_filters + 1, number_of_layers) |
301
|
1 |
|
hyperparameters['fc_hidden_nodes'] = np.random.randint( |
302
|
|
|
min_fc_nodes, max_fc_nodes + 1) |
303
|
1 |
|
return hyperparameters |
304
|
|
|
|
305
|
|
|
|
306
|
1 |
|
def generate_DeepConvLSTM_hyperparameter_set( |
307
|
|
|
min_conv_layers=1, max_conv_layers=10, |
308
|
|
|
min_conv_filters=10, max_conv_filters=100, |
309
|
|
|
min_lstm_layers=1, max_lstm_layers=5, |
310
|
|
|
min_lstm_dims=10, max_lstm_dims=100, |
311
|
|
|
low_lr=1, high_lr=4, low_reg=1, high_reg=4): |
312
|
|
|
""" Generate a hyperparameter set that defines a DeepConvLSTM model. |
313
|
|
|
|
314
|
|
|
Parameters |
315
|
|
|
---------- |
316
|
|
|
min_conv_layers : int |
317
|
|
|
minimum number of Conv layers in DeepConvLSTM model |
318
|
|
|
max_conv_layers : int |
319
|
|
|
maximum number of Conv layers in DeepConvLSTM model |
320
|
|
|
min_conv_filters : int |
321
|
|
|
minimum number of filters per Conv layer in DeepConvLSTM model |
322
|
|
|
max_conv_filters : int |
323
|
|
|
maximum number of filters per Conv layer in DeepConvLSTM model |
324
|
|
|
min_lstm_layers : int |
325
|
|
|
minimum number of Conv layers in DeepConvLSTM model |
326
|
|
|
max_lstm_layers : int |
327
|
|
|
maximum number of Conv layers in DeepConvLSTM model |
328
|
|
|
min_lstm_dims : int |
329
|
|
|
minimum number of hidden nodes per LSTM layer in DeepConvLSTM model |
330
|
|
|
max_lstm_dims : int |
331
|
|
|
maximum number of hidden nodes per LSTM layer in DeepConvLSTM model |
332
|
|
|
low_lr : float |
333
|
|
|
minimum of log range for learning rate: learning rate is sampled |
334
|
|
|
between `10**(-low_reg)` and `10**(-high_reg)` |
335
|
|
|
high_lr : float |
336
|
|
|
maximum of log range for learning rate: learning rate is sampled |
337
|
|
|
between `10**(-low_reg)` and `10**(-high_reg)` |
338
|
|
|
low_reg : float |
339
|
|
|
minimum of log range for regularization rate: regularization rate is |
340
|
|
|
sampled between `10**(-low_reg)` and `10**(-high_reg)` |
341
|
|
|
high_reg : float |
342
|
|
|
maximum of log range for regularization rate: regularization rate is |
343
|
|
|
sampled between `10**(-low_reg)` and `10**(-high_reg)` |
344
|
|
|
|
345
|
|
|
Returns |
346
|
|
|
---------- |
347
|
|
|
hyperparameters: dict |
348
|
|
|
hyperparameters for a DeepConvLSTM model |
349
|
|
|
""" |
350
|
1 |
|
hyperparameters = generate_base_hyper_parameter_set( |
351
|
|
|
low_lr, high_lr, low_reg, high_reg) |
352
|
1 |
|
number_of_conv_layers = np.random.randint( |
353
|
|
|
min_conv_layers, max_conv_layers + 1) |
354
|
1 |
|
hyperparameters['filters'] = np.random.randint( |
355
|
|
|
min_conv_filters, max_conv_filters + 1, number_of_conv_layers).tolist() |
356
|
1 |
|
number_of_lstm_layers = np.random.randint( |
357
|
|
|
min_lstm_layers, max_lstm_layers + 1) |
358
|
1 |
|
hyperparameters['lstm_dims'] = np.random.randint( |
359
|
|
|
min_lstm_dims, max_lstm_dims + 1, number_of_lstm_layers).tolist() |
360
|
1 |
|
return hyperparameters |
361
|
|
|
|
362
|
|
|
|
363
|
1 |
|
def generate_base_hyper_parameter_set( |
364
|
|
|
low_lr=1, |
365
|
|
|
high_lr=4, |
366
|
|
|
low_reg=1, |
367
|
|
|
high_reg=4): |
368
|
|
|
""" Generate a base set of hyperparameters that are necessary for any |
369
|
|
|
model, but sufficient for none. |
370
|
|
|
|
371
|
|
|
Parameters |
372
|
|
|
---------- |
373
|
|
|
low_lr : float |
374
|
|
|
minimum of log range for learning rate: learning rate is sampled |
375
|
|
|
between `10**(-low_reg)` and `10**(-high_reg)` |
376
|
|
|
high_lr : float |
377
|
|
|
maximum of log range for learning rate: learning rate is sampled |
378
|
|
|
between `10**(-low_reg)` and `10**(-high_reg)` |
379
|
|
|
low_reg : float |
380
|
|
|
minimum of log range for regularization rate: regularization rate is |
381
|
|
|
sampled between `10**(-low_reg)` and `10**(-high_reg)` |
382
|
|
|
high_reg : float |
383
|
|
|
maximum of log range for regularization rate: regularization rate is |
384
|
|
|
sampled between `10**(-low_reg)` and `10**(-high_reg)` |
385
|
|
|
|
386
|
|
|
Returns |
387
|
|
|
------- |
388
|
|
|
hyperparameters : dict |
389
|
|
|
basis hyperpameters |
390
|
|
|
""" |
391
|
1 |
|
hyperparameters = {} |
392
|
1 |
|
hyperparameters['learning_rate'] = get_learning_rate(low_lr, high_lr) |
393
|
1 |
|
hyperparameters['regularization_rate'] = get_regularization( |
394
|
|
|
low_reg, high_reg) |
395
|
1 |
|
return hyperparameters |
396
|
|
|
|
397
|
|
|
|
398
|
1 |
|
def get_learning_rate(low=1, high=4): |
399
|
|
|
""" Return random learning rate 10^-n where n is sampled uniformly between |
400
|
|
|
low and high bounds. |
401
|
|
|
|
402
|
|
|
Parameters |
403
|
|
|
---------- |
404
|
|
|
low : float |
405
|
|
|
low bound |
406
|
|
|
high : float |
407
|
|
|
high bound |
408
|
|
|
|
409
|
|
|
Returns |
410
|
|
|
------- |
411
|
|
|
learning_rate : float |
412
|
|
|
learning rate |
413
|
|
|
""" |
414
|
1 |
|
result = 10 ** (-np.random.uniform(low, high)) |
415
|
1 |
|
return result |
416
|
|
|
|
417
|
|
|
|
418
|
1 |
|
def get_regularization(low=1, high=4): |
419
|
|
|
""" Return random regularization rate 10^-n where n is sampled uniformly |
420
|
|
|
between low and high bounds. |
421
|
|
|
|
422
|
|
|
Parameters |
423
|
|
|
---------- |
424
|
|
|
low : float |
425
|
|
|
low bound |
426
|
|
|
high : float |
427
|
|
|
high bound |
428
|
|
|
|
429
|
|
|
Returns |
430
|
|
|
------- |
431
|
|
|
regularization_rate : float |
432
|
|
|
regularization rate |
433
|
|
|
""" |
434
|
|
|
return 10 ** (-np.random.uniform(low, high)) |
435
|
|
|
|
This check looks for lines that are too long. You can specify the maximum line length.