|
1
|
|
|
''' |
|
2
|
|
|
Pointcloud functions for reading/writing LAS files, and functions for dealing |
|
3
|
|
|
with the spatial reference system. |
|
4
|
|
|
''' |
|
5
|
|
|
|
|
6
|
1 |
|
from __future__ import print_function |
|
7
|
1 |
|
import liblas |
|
8
|
1 |
|
import pcl |
|
9
|
1 |
|
import os |
|
10
|
1 |
|
import numpy as np |
|
11
|
1 |
|
import time |
|
12
|
1 |
|
from patty.srs import force_srs, is_registered |
|
13
|
|
|
|
|
14
|
1 |
|
from sklearn.decomposition import PCA |
|
15
|
|
|
|
|
16
|
|
|
|
|
17
|
1 |
|
def _check_readable(filepath): |
|
18
|
|
|
""" |
|
19
|
|
|
Test whether filepath is readable, raises IOError otherwise |
|
20
|
|
|
""" |
|
21
|
1 |
|
with open(filepath): |
|
22
|
1 |
|
pass |
|
23
|
|
|
|
|
24
|
|
|
|
|
25
|
1 |
|
def _check_writable(filepath): |
|
26
|
|
|
""" |
|
27
|
|
|
Test whether filepath is writable, raises IOError otherwise |
|
28
|
|
|
""" |
|
29
|
|
|
# either the path exists but is not writable, or the path does not exist |
|
30
|
|
|
# and the parent is not writable. |
|
31
|
1 |
|
filepath = os.path.abspath(filepath) |
|
32
|
1 |
|
if (os.path.exists(filepath) and ( |
|
33
|
|
|
not os.path.isfile(filepath) or |
|
34
|
|
|
not os.access(filepath, os.W_OK) |
|
35
|
|
|
)) or not os.access(os.path.dirname(filepath), os.W_OK | os.X_OK): |
|
36
|
|
|
raise IOError("Cannot save to " + filepath) |
|
37
|
|
|
|
|
38
|
|
|
|
|
39
|
1 |
|
def clone(pc): |
|
40
|
|
|
""" |
|
41
|
|
|
Return a copy of a pointcloud, including registration metadata |
|
42
|
|
|
|
|
43
|
|
|
Arguments: |
|
44
|
|
|
pc: pcl.PointCloud() |
|
45
|
|
|
Returns: |
|
46
|
|
|
cp: pcl.PointCloud() |
|
47
|
|
|
""" |
|
48
|
|
|
|
|
49
|
|
|
cp = pcl.PointCloud(np.asarray(pc)) |
|
50
|
|
|
if is_registered(pc): |
|
51
|
|
|
force_srs(cp, same_as=pc) |
|
52
|
|
|
|
|
53
|
|
|
return cp |
|
54
|
|
|
|
|
55
|
|
|
|
|
56
|
1 |
|
def load(path, format=None, load_rgb=True): |
|
57
|
|
|
""" |
|
58
|
|
|
Read a pointcloud file. |
|
59
|
|
|
|
|
60
|
|
|
Supports LAS and CSV files, and lets PCD and PLY files be |
|
61
|
|
|
read by python-pcl. |
|
62
|
|
|
|
|
63
|
|
|
Arguments: |
|
64
|
|
|
path : string |
|
65
|
|
|
Filename. |
|
66
|
|
|
format : string, optional |
|
67
|
|
|
File format: "PLY", "PCD", "LAS", "CSV", |
|
68
|
|
|
or None to detect the format from the file extension. |
|
69
|
|
|
load_rgb : bool |
|
70
|
|
|
Whether RGB is loaded for PLY and PCD files. For LAS files, RGB is |
|
71
|
|
|
always read. |
|
72
|
|
|
|
|
73
|
|
|
Returns: |
|
74
|
|
|
pc : pcl.PointCloud |
|
75
|
|
|
""" |
|
76
|
1 |
|
if format == 'las' or format is None and path.endswith('.las'): |
|
77
|
1 |
|
pc = _load_las(path) |
|
78
|
1 |
|
elif format == 'las' or format is None and path.endswith('.csv'): |
|
79
|
|
|
pc = _load_csv(path) |
|
80
|
|
|
else: |
|
81
|
1 |
|
_check_readable(path) |
|
82
|
1 |
|
pc = pcl.load(path, format=format, loadRGB=load_rgb) |
|
83
|
|
|
|
|
84
|
1 |
|
return pc |
|
85
|
|
|
|
|
86
|
|
|
|
|
87
|
1 |
|
def save(cloud, path, format=None, binary=False, las_header=None): |
|
88
|
|
|
"""Save a pointcloud to file. |
|
89
|
|
|
|
|
90
|
|
|
Supports LAS and CSV files, and lets PCD and PLY |
|
91
|
|
|
files be saved by python-pcl. |
|
92
|
|
|
|
|
93
|
|
|
Arguments: |
|
94
|
|
|
cloud : pcl.PointCloud or pcl.PointCloudXYZRGB |
|
95
|
|
|
Pointcloud to save. |
|
96
|
|
|
path : string |
|
97
|
|
|
Filename. |
|
98
|
|
|
format : string |
|
99
|
|
|
File format: "PLY", "PCD", "LAS", "CSV", |
|
100
|
|
|
or None to detect the format from the file extension. |
|
101
|
|
|
binary : boolean |
|
102
|
|
|
Whether PLY and PCD files are saved in binary format. |
|
103
|
|
|
las_header: liblas.header.Header |
|
104
|
|
|
LAS header to use. When none, a default header is created by |
|
105
|
|
|
make_las_header(). Default: None |
|
106
|
|
|
""" |
|
107
|
1 |
|
if format == 'las' or format is None and path.endswith('.las'): |
|
108
|
1 |
|
_save_las(path, cloud, header=las_header) |
|
109
|
1 |
|
elif format == 'csv' or format is None and path.endswith('.csv'): |
|
110
|
|
|
_save_csv(path, cloud) |
|
111
|
|
|
else: |
|
112
|
1 |
|
_check_writable(path) |
|
113
|
1 |
|
if is_registered(cloud) and cloud.offset != np.zeros(3): |
|
114
|
|
|
cloud_array = np.asarray(cloud) |
|
115
|
|
|
cloud_array += cloud.offset |
|
116
|
1 |
|
pcl.save(cloud, path, format=format, binary=binary) |
|
117
|
|
|
|
|
118
|
|
|
|
|
119
|
1 |
|
def _load_las(lasfile): |
|
120
|
|
|
"""Read a LAS file |
|
121
|
|
|
|
|
122
|
|
|
Returns: |
|
123
|
|
|
registered pointcloudxyzrgb |
|
124
|
|
|
|
|
125
|
|
|
The pointcloud has color and XYZ coordinates, and the offset and precision |
|
126
|
|
|
set. |
|
127
|
|
|
""" |
|
128
|
1 |
|
_check_readable(lasfile) |
|
129
|
|
|
|
|
130
|
1 |
|
las = None |
|
131
|
1 |
|
try: |
|
132
|
1 |
|
las = liblas.file.File(lasfile) |
|
133
|
1 |
|
lsrs = las.header.get_srs() |
|
134
|
1 |
|
lsrs = lsrs.get_wkt() |
|
135
|
|
|
|
|
136
|
1 |
|
n_points = las.header.get_count() |
|
137
|
1 |
|
precise_points = np.zeros((n_points, 6), dtype=np.float64) |
|
138
|
|
|
|
|
139
|
1 |
|
for i, point in enumerate(las): |
|
140
|
1 |
|
precise_points[i] = (point.x, point.y, point.z, |
|
141
|
|
|
point.color.red / 256, |
|
142
|
|
|
point.color.green / 256, |
|
143
|
|
|
point.color.blue / 256) |
|
144
|
|
|
|
|
145
|
|
|
# reduce the offset to decrease floating point errors |
|
146
|
1 |
|
bbox = BoundingBox(points=precise_points[:, 0:3]) |
|
147
|
1 |
|
center = bbox.center |
|
148
|
1 |
|
precise_points[:, 0:3] -= center |
|
149
|
|
|
|
|
150
|
1 |
|
pointcloud = pcl.PointCloudXYZRGB(precise_points.astype(np.float32)) |
|
151
|
1 |
|
force_srs(pointcloud, srs=lsrs, offset=center) |
|
152
|
|
|
|
|
153
|
|
|
finally: |
|
154
|
1 |
|
if las is not None: |
|
155
|
1 |
|
las.close() |
|
156
|
|
|
|
|
157
|
1 |
|
return pointcloud |
|
158
|
|
|
|
|
159
|
|
|
|
|
160
|
1 |
|
def _load_csv(path, delimiter=','): |
|
161
|
|
|
""" |
|
162
|
|
|
Load a set of points from a CSV file as a pointcloud |
|
163
|
|
|
|
|
164
|
|
|
Returns: |
|
165
|
|
|
pc : pcl.PointCloud |
|
166
|
|
|
""" |
|
167
|
|
|
precise_points = np.genfromtxt(path, delimiter=delimiter, dtype=np.float64) |
|
168
|
|
|
offset = np.mean(precise_points, axis=0, dtype=np.float64) |
|
169
|
|
|
pc = pcl.PointCloud(np.array(precise_points - offset, dtype=np.float32)) |
|
170
|
|
|
|
|
171
|
|
|
force_srs(pc, offset=offset) |
|
172
|
|
|
return pc |
|
173
|
|
|
|
|
174
|
|
|
|
|
175
|
1 |
|
def _save_csv(path, pc, delimiter=', '): |
|
176
|
|
|
""" |
|
177
|
|
|
Write a pointcloud to a CSV file. |
|
178
|
|
|
|
|
179
|
|
|
Arguments: |
|
180
|
|
|
path: string |
|
181
|
|
|
Output filename |
|
182
|
|
|
pc: pcl.PointCloud |
|
183
|
|
|
Pointcloud to save |
|
184
|
|
|
delimiter: string |
|
185
|
|
|
Field delimiter to use, see np.savetxt documentation. |
|
186
|
|
|
|
|
187
|
|
|
""" |
|
188
|
|
|
if not hasattr(pc, 'offset'): |
|
189
|
|
|
offset = np.zeros(3) |
|
190
|
|
|
else: |
|
191
|
|
|
offset = pc.offset |
|
192
|
|
|
|
|
193
|
|
|
np.savetxt(path, np.asarray(pc) + offset, delimiter=delimiter) |
|
194
|
|
|
|
|
195
|
|
|
|
|
196
|
1 |
|
def extract_mask(pointcloud, mask): |
|
197
|
|
|
"""Extract all points in a mask into a new pointcloud. |
|
198
|
|
|
|
|
199
|
|
|
Arguments: |
|
200
|
|
|
pointcloud : pcl.PointCloud |
|
201
|
|
|
Input pointcloud. |
|
202
|
|
|
mask : numpy.ndarray of bool |
|
203
|
|
|
mask for which points from the pointcloud to include. |
|
204
|
|
|
Returns: |
|
205
|
|
|
pointcloud with the same registration (if any) as the original one.""" |
|
206
|
1 |
|
pointcloud_new = pointcloud.extract(np.where(mask)[0]) |
|
207
|
1 |
|
if is_registered(pointcloud): |
|
208
|
|
|
force_srs(pointcloud_new, same_as=pointcloud) |
|
209
|
1 |
|
return pointcloud_new |
|
210
|
|
|
|
|
211
|
|
|
|
|
212
|
1 |
|
def make_las_header(pointcloud): |
|
213
|
|
|
"""Make a LAS header for given pointcloud. |
|
214
|
|
|
|
|
215
|
|
|
If the pointcloud is registered, this is taken into account for the |
|
216
|
|
|
header metadata. |
|
217
|
|
|
|
|
218
|
|
|
LAS rounds the coordinates on writing; this is controlled via the |
|
219
|
|
|
'precision' attribute of the input pointcloud. By default this is |
|
220
|
|
|
0.01 in units of the projection. |
|
221
|
|
|
|
|
222
|
|
|
Arguments: |
|
223
|
|
|
pointcloud : pcl.PointCloud |
|
224
|
|
|
Input pointcloud. |
|
225
|
|
|
Returns: |
|
226
|
|
|
header : liblas.header.Header |
|
227
|
|
|
Header for writing the pointcloud to a LAS file. |
|
228
|
|
|
""" |
|
229
|
1 |
|
schema = liblas.schema.Schema() |
|
230
|
1 |
|
schema.time = False |
|
231
|
1 |
|
schema.color = True |
|
232
|
|
|
|
|
233
|
|
|
# FIXME: this format version assumes color is present |
|
234
|
1 |
|
head = liblas.header.Header() |
|
235
|
1 |
|
head.schema = schema |
|
236
|
1 |
|
head.dataformat_id = 3 |
|
237
|
1 |
|
head.major_version = 1 |
|
238
|
1 |
|
head.minor_version = 2 |
|
239
|
|
|
|
|
240
|
1 |
|
if is_registered(pointcloud): |
|
241
|
|
|
try: |
|
242
|
|
|
lsrs = liblas.srs.SRS() |
|
243
|
|
|
lsrs.set_wkt(pointcloud.srs.ExportToWkt()) |
|
244
|
|
|
head.set_srs(lsrs) |
|
245
|
|
|
except liblas.core.LASException: |
|
246
|
|
|
pass |
|
247
|
|
|
|
|
248
|
1 |
|
if hasattr(pointcloud, 'offset'): |
|
249
|
|
|
head.offset = pointcloud.offset |
|
250
|
|
|
else: |
|
251
|
1 |
|
head.offset = np.zeros(3) |
|
252
|
|
|
|
|
253
|
|
|
# FIXME: need extra precision to reduce floating point errors. We don't |
|
254
|
|
|
# know exactly why this works. It might reduce precision on the top of |
|
255
|
|
|
# the float, but reduces an error of one bit for the last digit. |
|
256
|
1 |
|
if not hasattr(pointcloud, 'precision'): |
|
257
|
1 |
|
precision = np.array([0.01, 0.01, 0.01], dtype=np.float64) |
|
258
|
|
|
else: |
|
259
|
|
|
precision = np.array(pointcloud.precision, dtype=np.float64) |
|
260
|
1 |
|
head.scale = precision * 0.5 |
|
261
|
|
|
|
|
262
|
1 |
|
pc_array = np.asarray(pointcloud) |
|
263
|
1 |
|
head.min = pc_array.min(axis=0) + head.offset |
|
264
|
1 |
|
head.max = pc_array.max(axis=0) + head.offset |
|
265
|
1 |
|
return head |
|
266
|
|
|
|
|
267
|
|
|
|
|
268
|
1 |
|
def _save_las(lasfile, pointcloud, header=None): |
|
269
|
|
|
"""Write a pointcloud to a LAS file |
|
270
|
|
|
|
|
271
|
|
|
Arguments: |
|
272
|
|
|
lasfile : string |
|
273
|
|
|
Filename. |
|
274
|
|
|
|
|
275
|
|
|
pointcloud : pcl.PointCloud |
|
276
|
|
|
|
|
277
|
|
|
header : liblas.header.Header, optional |
|
278
|
|
|
See :func:`make_las_header`. If not given, makes a header using |
|
279
|
|
|
that function with default settings. |
|
280
|
|
|
""" |
|
281
|
1 |
|
_check_writable(lasfile) |
|
282
|
|
|
|
|
283
|
1 |
|
if header is None: |
|
284
|
1 |
|
header = make_las_header(pointcloud) |
|
285
|
|
|
|
|
286
|
|
|
# deal with color |
|
287
|
1 |
|
if len(pointcloud[0]) > 3: |
|
288
|
1 |
|
do_rgb = True |
|
289
|
|
|
else: |
|
290
|
1 |
|
do_rgb = False |
|
291
|
|
|
|
|
292
|
1 |
|
precise_points = np.array(pointcloud, dtype=np.float64) |
|
293
|
1 |
|
precise_points /= header.scale |
|
294
|
|
|
|
|
295
|
1 |
|
las = None |
|
296
|
1 |
|
try: |
|
297
|
1 |
|
las = liblas.file.File(lasfile, mode="w", header=header) |
|
298
|
|
|
|
|
299
|
1 |
|
for i in xrange(pointcloud.size): |
|
300
|
1 |
|
point = liblas.point.Point() |
|
301
|
1 |
|
point.x, point.y, point.z = precise_points[i] |
|
302
|
1 |
|
if do_rgb: |
|
303
|
1 |
|
red, grn, blu = pointcloud[i][3:6] |
|
304
|
1 |
|
point.color = liblas.color.Color( |
|
305
|
|
|
red=int(red) * 256, |
|
306
|
|
|
green=int(grn) * 256, |
|
307
|
|
|
blue=int(blu) * 256) |
|
308
|
1 |
|
las.write(point) |
|
309
|
|
|
finally: |
|
310
|
1 |
|
if las is not None: |
|
311
|
1 |
|
las.close() |
|
312
|
|
|
|
|
313
|
|
|
|
|
314
|
1 |
|
class BoundingBox(object): |
|
315
|
|
|
'''A bounding box for a sequence of points. |
|
316
|
|
|
|
|
317
|
|
|
Center, size and diagonal are updated when the minimum or maximum are |
|
318
|
|
|
updated. |
|
319
|
|
|
|
|
320
|
|
|
Constructor usage: either set points (any object that is converted to an |
|
321
|
|
|
NxD array by np.asarray, with D the number of dimensions) or a fixed min |
|
322
|
|
|
and max. |
|
323
|
|
|
''' |
|
324
|
|
|
|
|
325
|
1 |
|
def __init__(self, points=None, min=None, max=None): |
|
326
|
1 |
|
if min is not None and max is not None: |
|
327
|
|
|
self._min = np.asarray(min, dtype=np.float64) |
|
328
|
|
|
self._max = np.asarray(max, dtype=np.float64) |
|
329
|
1 |
|
elif points is not None: |
|
330
|
1 |
|
points_array = np.asarray(points) |
|
331
|
1 |
|
self._min = points_array.min(axis=0) |
|
332
|
1 |
|
self._max = points_array.max(axis=0) |
|
333
|
|
|
else: |
|
334
|
|
|
raise TypeError("Need to give min and max or matrix") |
|
335
|
|
|
|
|
336
|
1 |
|
self._reset() |
|
337
|
|
|
|
|
338
|
1 |
|
def __str__(self): |
|
339
|
|
|
return 'BoundingBox <%s - %s>' % (self.min, self.max) |
|
340
|
|
|
|
|
341
|
1 |
|
def _reset(self): |
|
342
|
1 |
|
self._center = None |
|
343
|
1 |
|
self._size = None |
|
344
|
|
|
|
|
345
|
1 |
|
@property |
|
346
|
|
|
def min(self): |
|
347
|
1 |
|
return self._min |
|
348
|
|
|
|
|
349
|
1 |
|
@min.setter |
|
350
|
|
|
def min(self, new_min): |
|
351
|
|
|
self._reset() |
|
352
|
|
|
self.min = new_min |
|
353
|
|
|
|
|
354
|
1 |
|
@property |
|
355
|
|
|
def max(self): |
|
356
|
1 |
|
return self._max |
|
357
|
|
|
|
|
358
|
1 |
|
@max.setter |
|
359
|
|
|
def max(self, new_max): |
|
360
|
|
|
self._reset() |
|
361
|
|
|
self.max = new_max |
|
362
|
|
|
|
|
363
|
1 |
|
@property |
|
364
|
|
|
def center(self): |
|
365
|
|
|
''' Center point of the bounding box''' |
|
366
|
1 |
|
if self._center is None: |
|
367
|
1 |
|
self._center = (self.min + self.max) / 2.0 |
|
368
|
1 |
|
return self._center |
|
369
|
|
|
|
|
370
|
1 |
|
@property |
|
371
|
|
|
def size(self): |
|
372
|
|
|
''' N-dimensional size array ''' |
|
373
|
|
|
if self._size is None: |
|
374
|
|
|
self._size = self.max - self.min |
|
375
|
|
|
return self._size |
|
376
|
|
|
|
|
377
|
1 |
|
@property |
|
378
|
|
|
def diagonal(self): |
|
379
|
|
|
''' Length of the diagonal of the box. ''' |
|
380
|
|
|
return np.linalg.norm(self.size) |
|
381
|
|
|
|
|
382
|
1 |
|
def contains(self, pos): |
|
383
|
|
|
''' Whether the bounding box contains given position. ''' |
|
384
|
|
|
return np.all((pos[0:3] >= self.min) & (pos[0:3] <= self.max)) |
|
385
|
|
|
|
|
386
|
|
|
|
|
387
|
1 |
|
def log(*args, **kwargs): |
|
388
|
|
|
"""Simple logging function that prints to stdout""" |
|
389
|
|
|
print(time.strftime("[%F %H:%M:%S]", time.gmtime()), *args, **kwargs) |
|
390
|
|
|
|
|
391
|
|
|
|
|
392
|
1 |
|
def measure_length(pointcloud): |
|
393
|
|
|
"""Returns the length of a point cloud in its longest direction.""" |
|
394
|
1 |
|
if len(pointcloud) < 2: |
|
395
|
1 |
|
return 0 |
|
396
|
|
|
|
|
397
|
1 |
|
pca = PCA(n_components=1) |
|
398
|
1 |
|
pc_array = np.asarray(pointcloud) |
|
399
|
1 |
|
pca.fit(pc_array) |
|
400
|
1 |
|
primary_axis = np.dot(pc_array, np.transpose(pca.components_))[:, 0] |
|
401
|
1 |
|
return np.max(primary_axis) - np.min(primary_axis) |
|
402
|
|
|
|
|
403
|
|
|
|
|
404
|
1 |
|
def downsample_voxel(pc, voxel_size=0.01): |
|
405
|
|
|
'''Downsample a pointcloud using a voxel grid filter. |
|
406
|
|
|
Resulting pointcloud has the same SRS and offset as the input. |
|
407
|
|
|
|
|
408
|
|
|
Arguments: |
|
409
|
|
|
pc : pcl.PointCloud |
|
410
|
|
|
Original pointcloud |
|
411
|
|
|
float : voxel_size |
|
412
|
|
|
Grid spacing for the voxel grid |
|
413
|
|
|
Returns: |
|
414
|
|
|
pc : pcl.PointCloud |
|
415
|
|
|
filtered pointcloud |
|
416
|
|
|
''' |
|
417
|
1 |
|
pc_filter = pc.make_voxel_grid_filter() |
|
418
|
1 |
|
pc_filter.set_leaf_size(voxel_size, voxel_size, voxel_size) |
|
419
|
1 |
|
newpc = pc_filter.filter() |
|
420
|
|
|
|
|
421
|
1 |
|
force_srs(newpc, same_as=pc) |
|
422
|
|
|
|
|
423
|
1 |
|
return newpc |
|
424
|
|
|
|
|
425
|
|
|
|
|
426
|
1 |
|
def downsample_random(pc, fraction, random_seed=None): |
|
427
|
|
|
"""Randomly downsample pointcloud to a fraction of its size. |
|
428
|
|
|
|
|
429
|
|
|
Returns a pointcloud of size fraction * len(pc), rounded to the nearest |
|
430
|
|
|
integer. Resulting pointcloud has the same SRS and offset as the input. |
|
431
|
|
|
|
|
432
|
|
|
Use random_seed=k for some integer k to get reproducible results. |
|
433
|
|
|
Arguments: |
|
434
|
|
|
pc : pcl.PointCloud |
|
435
|
|
|
Input pointcloud. |
|
436
|
|
|
fraction : float |
|
437
|
|
|
Fraction of points to include. |
|
438
|
|
|
random_seed : int, optional |
|
439
|
|
|
Seed to use in random number generator. |
|
440
|
|
|
|
|
441
|
|
|
Returns: |
|
442
|
|
|
pcl.Pointcloud |
|
443
|
|
|
""" |
|
444
|
1 |
|
if not 0 < fraction <= 1: |
|
445
|
1 |
|
raise ValueError("Expected fraction in (0,1], got %r" % fraction) |
|
446
|
|
|
|
|
447
|
1 |
|
rng = np.random.RandomState(random_seed) |
|
448
|
|
|
|
|
449
|
1 |
|
k = max(int(round(fraction * len(pc))), 1) |
|
450
|
1 |
|
sample = rng.choice(len(pc), k, replace=False) |
|
451
|
1 |
|
new_pc = pc.extract(sample) |
|
452
|
|
|
|
|
453
|
1 |
|
force_srs(new_pc, same_as=pc) |
|
454
|
|
|
|
|
455
|
|
|
return new_pc |
|
456
|
|
|
|