Total Complexity | 122 |
Total Lines | 616 |
Duplicated Lines | 98.05 % |
Changes | 0 |
Duplicate code is one of the most pungent code smells. A rule that is often used is to re-structure code once it is duplicated in three or more places.
Common duplication problems, and corresponding solutions are:
Complex classes like reports.combinedequipmentcarbon often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.
Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.
1 | import re |
||
2 | import falcon |
||
3 | import simplejson as json |
||
4 | import mysql.connector |
||
5 | import config |
||
6 | from datetime import datetime, timedelta, timezone |
||
7 | from core import utilities |
||
8 | from decimal import Decimal |
||
9 | import excelexporters.combinedequipmentcarbon |
||
10 | |||
11 | |||
12 | View Code Duplication | class Reporting: |
|
|
|||
13 | @staticmethod |
||
14 | def __init__(): |
||
15 | """"Initializes Reporting""" |
||
16 | pass |
||
17 | |||
18 | @staticmethod |
||
19 | def on_options(req, resp): |
||
20 | resp.status = falcon.HTTP_200 |
||
21 | |||
22 | #################################################################################################################### |
||
23 | # PROCEDURES |
||
24 | # Step 1: valid parameters |
||
25 | # Step 2: query the combined equipment |
||
26 | # Step 3: query energy items |
||
27 | # Step 4: query associated points |
||
28 | # Step 5: query associated equipments |
||
29 | # Step 6: query base period energy carbon dioxide emissions |
||
30 | # Step 7: query reporting period energy carbon dioxide emissions |
||
31 | # Step 8: query tariff data |
||
32 | # Step 9: query associated points data |
||
33 | # Step 10: query associated equipments energy carbon dioxide emissions |
||
34 | # Step 11: construct the report |
||
35 | #################################################################################################################### |
||
36 | @staticmethod |
||
37 | def on_get(req, resp): |
||
38 | print(req.params) |
||
39 | combined_equipment_id = req.params.get('combinedequipmentid') |
||
40 | combined_equipment_uuid = req.params.get('combinedequipmentuuid') |
||
41 | period_type = req.params.get('periodtype') |
||
42 | base_start_datetime_local = req.params.get('baseperiodstartdatetime') |
||
43 | base_end_datetime_local = req.params.get('baseperiodenddatetime') |
||
44 | reporting_start_datetime_local = req.params.get('reportingperiodstartdatetime') |
||
45 | reporting_end_datetime_local = req.params.get('reportingperiodenddatetime') |
||
46 | |||
47 | ################################################################################################################ |
||
48 | # Step 1: valid parameters |
||
49 | ################################################################################################################ |
||
50 | if combined_equipment_id is None and combined_equipment_uuid is None: |
||
51 | raise falcon.HTTPError(falcon.HTTP_400, |
||
52 | title='API.BAD_REQUEST', |
||
53 | description='API.INVALID_COMBINED_EQUIPMENT_ID') |
||
54 | |||
55 | if combined_equipment_id is not None: |
||
56 | combined_equipment_id = str.strip(combined_equipment_id) |
||
57 | if not combined_equipment_id.isdigit() or int(combined_equipment_id) <= 0: |
||
58 | raise falcon.HTTPError(falcon.HTTP_400, |
||
59 | title='API.BAD_REQUEST', |
||
60 | description='API.INVALID_COMBINED_EQUIPMENT_ID') |
||
61 | |||
62 | if combined_equipment_uuid is not None: |
||
63 | regex = re.compile('^[a-f0-9]{8}-?[a-f0-9]{4}-?4[a-f0-9]{3}-?[89ab][a-f0-9]{3}-?[a-f0-9]{12}\Z', re.I) |
||
64 | match = regex.match(str.strip(combined_equipment_uuid)) |
||
65 | if not bool(match): |
||
66 | raise falcon.HTTPError(falcon.HTTP_400, |
||
67 | title='API.BAD_REQUEST', |
||
68 | description='API.INVALID_COMBINED_EQUIPMENT_UUID') |
||
69 | |||
70 | if period_type is None: |
||
71 | raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', description='API.INVALID_PERIOD_TYPE') |
||
72 | else: |
||
73 | period_type = str.strip(period_type) |
||
74 | if period_type not in ['hourly', 'daily', 'weekly', 'monthly', 'yearly']: |
||
75 | raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', description='API.INVALID_PERIOD_TYPE') |
||
76 | |||
77 | timezone_offset = int(config.utc_offset[1:3]) * 60 + int(config.utc_offset[4:6]) |
||
78 | if config.utc_offset[0] == '-': |
||
79 | timezone_offset = -timezone_offset |
||
80 | |||
81 | base_start_datetime_utc = None |
||
82 | if base_start_datetime_local is not None and len(str.strip(base_start_datetime_local)) > 0: |
||
83 | base_start_datetime_local = str.strip(base_start_datetime_local) |
||
84 | try: |
||
85 | base_start_datetime_utc = datetime.strptime(base_start_datetime_local, |
||
86 | '%Y-%m-%dT%H:%M:%S').replace(tzinfo=timezone.utc) - \ |
||
87 | timedelta(minutes=timezone_offset) |
||
88 | except ValueError: |
||
89 | raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', |
||
90 | description="API.INVALID_BASE_PERIOD_START_DATETIME") |
||
91 | |||
92 | base_end_datetime_utc = None |
||
93 | if base_end_datetime_local is not None and len(str.strip(base_end_datetime_local)) > 0: |
||
94 | base_end_datetime_local = str.strip(base_end_datetime_local) |
||
95 | try: |
||
96 | base_end_datetime_utc = datetime.strptime(base_end_datetime_local, |
||
97 | '%Y-%m-%dT%H:%M:%S').replace(tzinfo=timezone.utc) - \ |
||
98 | timedelta(minutes=timezone_offset) |
||
99 | except ValueError: |
||
100 | raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', |
||
101 | description="API.INVALID_BASE_PERIOD_END_DATETIME") |
||
102 | |||
103 | if base_start_datetime_utc is not None and base_end_datetime_utc is not None and \ |
||
104 | base_start_datetime_utc >= base_end_datetime_utc: |
||
105 | raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', |
||
106 | description='API.INVALID_BASE_PERIOD_END_DATETIME') |
||
107 | |||
108 | if reporting_start_datetime_local is None: |
||
109 | raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', |
||
110 | description="API.INVALID_REPORTING_PERIOD_START_DATETIME") |
||
111 | else: |
||
112 | reporting_start_datetime_local = str.strip(reporting_start_datetime_local) |
||
113 | try: |
||
114 | reporting_start_datetime_utc = datetime.strptime(reporting_start_datetime_local, |
||
115 | '%Y-%m-%dT%H:%M:%S').replace(tzinfo=timezone.utc) - \ |
||
116 | timedelta(minutes=timezone_offset) |
||
117 | except ValueError: |
||
118 | raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', |
||
119 | description="API.INVALID_REPORTING_PERIOD_START_DATETIME") |
||
120 | |||
121 | if reporting_end_datetime_local is None: |
||
122 | raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', |
||
123 | description="API.INVALID_REPORTING_PERIOD_END_DATETIME") |
||
124 | else: |
||
125 | reporting_end_datetime_local = str.strip(reporting_end_datetime_local) |
||
126 | try: |
||
127 | reporting_end_datetime_utc = datetime.strptime(reporting_end_datetime_local, |
||
128 | '%Y-%m-%dT%H:%M:%S').replace(tzinfo=timezone.utc) - \ |
||
129 | timedelta(minutes=timezone_offset) |
||
130 | except ValueError: |
||
131 | raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', |
||
132 | description="API.INVALID_REPORTING_PERIOD_END_DATETIME") |
||
133 | |||
134 | if reporting_start_datetime_utc >= reporting_end_datetime_utc: |
||
135 | raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', |
||
136 | description='API.INVALID_REPORTING_PERIOD_END_DATETIME') |
||
137 | |||
138 | ################################################################################################################ |
||
139 | # Step 2: query the combined equipment |
||
140 | ################################################################################################################ |
||
141 | cnx_system = mysql.connector.connect(**config.myems_system_db) |
||
142 | cursor_system = cnx_system.cursor() |
||
143 | |||
144 | cnx_carbon = mysql.connector.connect(**config.myems_carbon_db) |
||
145 | cursor_carbon = cnx_carbon.cursor() |
||
146 | |||
147 | cnx_historical = mysql.connector.connect(**config.myems_historical_db) |
||
148 | cursor_historical = cnx_historical.cursor() |
||
149 | |||
150 | if combined_equipment_id is not None: |
||
151 | cursor_system.execute(" SELECT id, name, cost_center_id " |
||
152 | " FROM tbl_combined_equipments " |
||
153 | " WHERE id = %s ", (combined_equipment_id,)) |
||
154 | row_combined_equipment = cursor_system.fetchone() |
||
155 | elif combined_equipment_uuid is not None: |
||
156 | cursor_system.execute(" SELECT id, name, cost_center_id " |
||
157 | " FROM tbl_combined_equipments " |
||
158 | " WHERE uuid = %s ", (combined_equipment_uuid,)) |
||
159 | row_combined_equipment = cursor_system.fetchone() |
||
160 | |||
161 | if row_combined_equipment is None: |
||
162 | if cursor_system: |
||
163 | cursor_system.close() |
||
164 | if cnx_system: |
||
165 | cnx_system.close() |
||
166 | |||
167 | if cursor_carbon: |
||
168 | cursor_carbon.close() |
||
169 | if cnx_carbon: |
||
170 | cnx_carbon.close() |
||
171 | |||
172 | if cursor_historical: |
||
173 | cursor_historical.close() |
||
174 | if cnx_historical: |
||
175 | cnx_historical.close() |
||
176 | raise falcon.HTTPError(falcon.HTTP_404, |
||
177 | title='API.NOT_FOUND', |
||
178 | description='API.COMBINED_EQUIPMENT_NOT_FOUND') |
||
179 | |||
180 | combined_equipment = dict() |
||
181 | combined_equipment['id'] = row_combined_equipment[0] |
||
182 | combined_equipment['name'] = row_combined_equipment[1] |
||
183 | combined_equipment['cost_center_id'] = row_combined_equipment[2] |
||
184 | |||
185 | ################################################################################################################ |
||
186 | # Step 3: query energy categories |
||
187 | ################################################################################################################ |
||
188 | energy_category_set = set() |
||
189 | # query energy categories in base period |
||
190 | cursor_carbon.execute(" SELECT DISTINCT(energy_category_id) " |
||
191 | " FROM tbl_combined_equipment_input_category_hourly " |
||
192 | " WHERE combined_equipment_id = %s " |
||
193 | " AND start_datetime_utc >= %s " |
||
194 | " AND start_datetime_utc < %s ", |
||
195 | (combined_equipment['id'], base_start_datetime_utc, base_end_datetime_utc)) |
||
196 | rows_energy_categories = cursor_carbon.fetchall() |
||
197 | if rows_energy_categories is not None or len(rows_energy_categories) > 0: |
||
198 | for row_energy_category in rows_energy_categories: |
||
199 | energy_category_set.add(row_energy_category[0]) |
||
200 | |||
201 | # query energy categories in reporting period |
||
202 | cursor_carbon.execute(" SELECT DISTINCT(energy_category_id) " |
||
203 | " FROM tbl_combined_equipment_input_category_hourly " |
||
204 | " WHERE combined_equipment_id = %s " |
||
205 | " AND start_datetime_utc >= %s " |
||
206 | " AND start_datetime_utc < %s ", |
||
207 | (combined_equipment['id'], reporting_start_datetime_utc, reporting_end_datetime_utc)) |
||
208 | rows_energy_categories = cursor_carbon.fetchall() |
||
209 | if rows_energy_categories is not None or len(rows_energy_categories) > 0: |
||
210 | for row_energy_category in rows_energy_categories: |
||
211 | energy_category_set.add(row_energy_category[0]) |
||
212 | |||
213 | # query all energy categories in base period and reporting period |
||
214 | cursor_system.execute(" SELECT id, name, unit_of_measure, kgce, kgco2e " |
||
215 | " FROM tbl_energy_categories " |
||
216 | " ORDER BY id ", ) |
||
217 | rows_energy_categories = cursor_system.fetchall() |
||
218 | if rows_energy_categories is None or len(rows_energy_categories) == 0: |
||
219 | if cursor_system: |
||
220 | cursor_system.close() |
||
221 | if cnx_system: |
||
222 | cnx_system.close() |
||
223 | |||
224 | if cursor_carbon: |
||
225 | cursor_carbon.close() |
||
226 | if cnx_carbon: |
||
227 | cnx_carbon.close() |
||
228 | |||
229 | if cursor_historical: |
||
230 | cursor_historical.close() |
||
231 | if cnx_historical: |
||
232 | cnx_historical.close() |
||
233 | raise falcon.HTTPError(falcon.HTTP_404, |
||
234 | title='API.NOT_FOUND', |
||
235 | description='API.ENERGY_CATEGORY_NOT_FOUND') |
||
236 | energy_category_dict = dict() |
||
237 | for row_energy_category in rows_energy_categories: |
||
238 | if row_energy_category[0] in energy_category_set: |
||
239 | energy_category_dict[row_energy_category[0]] = {"name": row_energy_category[1], |
||
240 | "unit_of_measure": row_energy_category[2], |
||
241 | "kgce": row_energy_category[3], |
||
242 | "kgco2e": row_energy_category[4]} |
||
243 | |||
244 | ################################################################################################################ |
||
245 | # Step 4: query associated points |
||
246 | ################################################################################################################ |
||
247 | point_list = list() |
||
248 | cursor_system.execute(" SELECT p.id, ep.name, p.units, p.object_type " |
||
249 | " FROM tbl_combined_equipments e, tbl_combined_equipments_parameters ep, tbl_points p " |
||
250 | " WHERE e.id = %s AND e.id = ep.combined_equipment_id AND ep.parameter_type = 'point' " |
||
251 | " AND ep.point_id = p.id " |
||
252 | " ORDER BY p.id ", (combined_equipment['id'],)) |
||
253 | rows_points = cursor_system.fetchall() |
||
254 | if rows_points is not None and len(rows_points) > 0: |
||
255 | for row in rows_points: |
||
256 | point_list.append({"id": row[0], "name": row[1], "units": row[2], "object_type": row[3]}) |
||
257 | |||
258 | ################################################################################################################ |
||
259 | # Step 5: query associated equipments |
||
260 | ################################################################################################################ |
||
261 | associated_equipment_list = list() |
||
262 | cursor_system.execute(" SELECT e.id, e.name " |
||
263 | " FROM tbl_equipments e,tbl_combined_equipments_equipments ee" |
||
264 | " WHERE ee.combined_equipment_id = %s AND e.id = ee.equipment_id" |
||
265 | " ORDER BY id ", (combined_equipment['id'],)) |
||
266 | rows_associated_equipments = cursor_system.fetchall() |
||
267 | if rows_associated_equipments is not None and len(rows_associated_equipments) > 0: |
||
268 | for row in rows_associated_equipments: |
||
269 | associated_equipment_list.append({"id": row[0], "name": row[1]}) |
||
270 | |||
271 | ################################################################################################################ |
||
272 | # Step 6: query base period energy carbon dioxide emissions |
||
273 | ################################################################################################################ |
||
274 | base = dict() |
||
275 | if energy_category_set is not None and len(energy_category_set) > 0: |
||
276 | for energy_category_id in energy_category_set: |
||
277 | base[energy_category_id] = dict() |
||
278 | base[energy_category_id]['timestamps'] = list() |
||
279 | base[energy_category_id]['values'] = list() |
||
280 | base[energy_category_id]['subtotal'] = Decimal(0.0) |
||
281 | |||
282 | cursor_carbon.execute(" SELECT start_datetime_utc, actual_value " |
||
283 | " FROM tbl_combined_equipment_input_category_hourly " |
||
284 | " WHERE combined_equipment_id = %s " |
||
285 | " AND energy_category_id = %s " |
||
286 | " AND start_datetime_utc >= %s " |
||
287 | " AND start_datetime_utc < %s " |
||
288 | " ORDER BY start_datetime_utc ", |
||
289 | (combined_equipment['id'], |
||
290 | energy_category_id, |
||
291 | base_start_datetime_utc, |
||
292 | base_end_datetime_utc)) |
||
293 | rows_combined_equipment_hourly = cursor_carbon.fetchall() |
||
294 | |||
295 | rows_combined_equipment_periodically = \ |
||
296 | utilities.aggregate_hourly_data_by_period(rows_combined_equipment_hourly, |
||
297 | base_start_datetime_utc, |
||
298 | base_end_datetime_utc, |
||
299 | period_type) |
||
300 | for row_combined_equipment_periodically in rows_combined_equipment_periodically: |
||
301 | current_datetime_local = row_combined_equipment_periodically[0].replace(tzinfo=timezone.utc) + \ |
||
302 | timedelta(minutes=timezone_offset) |
||
303 | if period_type == 'hourly': |
||
304 | current_datetime = current_datetime_local.strftime('%Y-%m-%dT%H:%M:%S') |
||
305 | elif period_type == 'daily': |
||
306 | current_datetime = current_datetime_local.strftime('%Y-%m-%d') |
||
307 | elif period_type == 'weekly': |
||
308 | current_datetime = current_datetime_local.strftime('%Y-%m-%d') |
||
309 | elif period_type == 'monthly': |
||
310 | current_datetime = current_datetime_local.strftime('%Y-%m') |
||
311 | elif period_type == 'yearly': |
||
312 | current_datetime = current_datetime_local.strftime('%Y') |
||
313 | |||
314 | actual_value = Decimal(0.0) if row_combined_equipment_periodically[1] is None \ |
||
315 | else row_combined_equipment_periodically[1] |
||
316 | base[energy_category_id]['timestamps'].append(current_datetime) |
||
317 | base[energy_category_id]['values'].append(actual_value) |
||
318 | base[energy_category_id]['subtotal'] += actual_value |
||
319 | |||
320 | ################################################################################################################ |
||
321 | # Step 7: query reporting period energy carbon dioxide emissions |
||
322 | ################################################################################################################ |
||
323 | reporting = dict() |
||
324 | if energy_category_set is not None and len(energy_category_set) > 0: |
||
325 | for energy_category_id in energy_category_set: |
||
326 | reporting[energy_category_id] = dict() |
||
327 | reporting[energy_category_id]['timestamps'] = list() |
||
328 | reporting[energy_category_id]['values'] = list() |
||
329 | reporting[energy_category_id]['subtotal'] = Decimal(0.0) |
||
330 | reporting[energy_category_id]['toppeak'] = Decimal(0.0) |
||
331 | reporting[energy_category_id]['onpeak'] = Decimal(0.0) |
||
332 | reporting[energy_category_id]['midpeak'] = Decimal(0.0) |
||
333 | reporting[energy_category_id]['offpeak'] = Decimal(0.0) |
||
334 | |||
335 | cursor_carbon.execute(" SELECT start_datetime_utc, actual_value " |
||
336 | " FROM tbl_combined_equipment_input_category_hourly " |
||
337 | " WHERE combined_equipment_id = %s " |
||
338 | " AND energy_category_id = %s " |
||
339 | " AND start_datetime_utc >= %s " |
||
340 | " AND start_datetime_utc < %s " |
||
341 | " ORDER BY start_datetime_utc ", |
||
342 | (combined_equipment['id'], |
||
343 | energy_category_id, |
||
344 | reporting_start_datetime_utc, |
||
345 | reporting_end_datetime_utc)) |
||
346 | rows_combined_equipment_hourly = cursor_carbon.fetchall() |
||
347 | |||
348 | rows_combined_equipment_periodically = \ |
||
349 | utilities.aggregate_hourly_data_by_period(rows_combined_equipment_hourly, |
||
350 | reporting_start_datetime_utc, |
||
351 | reporting_end_datetime_utc, |
||
352 | period_type) |
||
353 | for row_combined_equipment_periodically in rows_combined_equipment_periodically: |
||
354 | current_datetime_local = row_combined_equipment_periodically[0].replace(tzinfo=timezone.utc) + \ |
||
355 | timedelta(minutes=timezone_offset) |
||
356 | if period_type == 'hourly': |
||
357 | current_datetime = current_datetime_local.strftime('%Y-%m-%dT%H:%M:%S') |
||
358 | elif period_type == 'daily': |
||
359 | current_datetime = current_datetime_local.strftime('%Y-%m-%d') |
||
360 | elif period_type == 'weekly': |
||
361 | current_datetime = current_datetime_local.strftime('%Y-%m-%d') |
||
362 | elif period_type == 'monthly': |
||
363 | current_datetime = current_datetime_local.strftime('%Y-%m') |
||
364 | elif period_type == 'yearly': |
||
365 | current_datetime = current_datetime_local.strftime('%Y') |
||
366 | |||
367 | actual_value = Decimal(0.0) if row_combined_equipment_periodically[1] is None \ |
||
368 | else row_combined_equipment_periodically[1] |
||
369 | reporting[energy_category_id]['timestamps'].append(current_datetime) |
||
370 | reporting[energy_category_id]['values'].append(actual_value) |
||
371 | reporting[energy_category_id]['subtotal'] += actual_value |
||
372 | |||
373 | energy_category_tariff_dict = \ |
||
374 | utilities.get_energy_category_peak_types(combined_equipment['cost_center_id'], |
||
375 | energy_category_id, |
||
376 | reporting_start_datetime_utc, |
||
377 | reporting_end_datetime_utc) |
||
378 | for row in rows_combined_equipment_hourly: |
||
379 | peak_type = energy_category_tariff_dict.get(row[0], None) |
||
380 | if peak_type == 'toppeak': |
||
381 | reporting[energy_category_id]['toppeak'] += row[1] |
||
382 | elif peak_type == 'onpeak': |
||
383 | reporting[energy_category_id]['onpeak'] += row[1] |
||
384 | elif peak_type == 'midpeak': |
||
385 | reporting[energy_category_id]['midpeak'] += row[1] |
||
386 | elif peak_type == 'offpeak': |
||
387 | reporting[energy_category_id]['offpeak'] += row[1] |
||
388 | |||
389 | ################################################################################################################ |
||
390 | # Step 8: query tariff data |
||
391 | ################################################################################################################ |
||
392 | parameters_data = dict() |
||
393 | parameters_data['names'] = list() |
||
394 | parameters_data['timestamps'] = list() |
||
395 | parameters_data['values'] = list() |
||
396 | if energy_category_set is not None and len(energy_category_set) > 0: |
||
397 | for energy_category_id in energy_category_set: |
||
398 | energy_category_tariff_dict = \ |
||
399 | utilities.get_energy_category_tariffs(combined_equipment['cost_center_id'], |
||
400 | energy_category_id, |
||
401 | reporting_start_datetime_utc, |
||
402 | reporting_end_datetime_utc) |
||
403 | tariff_timestamp_list = list() |
||
404 | tariff_value_list = list() |
||
405 | for k, v in energy_category_tariff_dict.items(): |
||
406 | # convert k from utc to local |
||
407 | k = k + timedelta(minutes=timezone_offset) |
||
408 | tariff_timestamp_list.append(k.isoformat()[0:19][0:19]) |
||
409 | tariff_value_list.append(v) |
||
410 | |||
411 | parameters_data['names'].append('TARIFF-' + energy_category_dict[energy_category_id]['name']) |
||
412 | parameters_data['timestamps'].append(tariff_timestamp_list) |
||
413 | parameters_data['values'].append(tariff_value_list) |
||
414 | |||
415 | ################################################################################################################ |
||
416 | # Step 9: query associated points data |
||
417 | ################################################################################################################ |
||
418 | for point in point_list: |
||
419 | point_values = [] |
||
420 | point_timestamps = [] |
||
421 | if point['object_type'] == 'ANALOG_VALUE': |
||
422 | query = (" SELECT utc_date_time, actual_value " |
||
423 | " FROM tbl_analog_value " |
||
424 | " WHERE point_id = %s " |
||
425 | " AND utc_date_time BETWEEN %s AND %s " |
||
426 | " ORDER BY utc_date_time ") |
||
427 | cursor_historical.execute(query, (point['id'], |
||
428 | reporting_start_datetime_utc, |
||
429 | reporting_end_datetime_utc)) |
||
430 | rows = cursor_historical.fetchall() |
||
431 | |||
432 | if rows is not None and len(rows) > 0: |
||
433 | for row in rows: |
||
434 | current_datetime_local = row[0].replace(tzinfo=timezone.utc) + \ |
||
435 | timedelta(minutes=timezone_offset) |
||
436 | current_datetime = current_datetime_local.strftime('%Y-%m-%dT%H:%M:%S') |
||
437 | point_timestamps.append(current_datetime) |
||
438 | point_values.append(row[1]) |
||
439 | |||
440 | elif point['object_type'] == 'ENERGY_VALUE': |
||
441 | query = (" SELECT utc_date_time, actual_value " |
||
442 | " FROM tbl_energy_value " |
||
443 | " WHERE point_id = %s " |
||
444 | " AND utc_date_time BETWEEN %s AND %s " |
||
445 | " ORDER BY utc_date_time ") |
||
446 | cursor_historical.execute(query, (point['id'], |
||
447 | reporting_start_datetime_utc, |
||
448 | reporting_end_datetime_utc)) |
||
449 | rows = cursor_historical.fetchall() |
||
450 | |||
451 | if rows is not None and len(rows) > 0: |
||
452 | for row in rows: |
||
453 | current_datetime_local = row[0].replace(tzinfo=timezone.utc) + \ |
||
454 | timedelta(minutes=timezone_offset) |
||
455 | current_datetime = current_datetime_local.strftime('%Y-%m-%dT%H:%M:%S') |
||
456 | point_timestamps.append(current_datetime) |
||
457 | point_values.append(row[1]) |
||
458 | elif point['object_type'] == 'DIGITAL_VALUE': |
||
459 | query = (" SELECT utc_date_time, actual_value " |
||
460 | " FROM tbl_digital_value " |
||
461 | " WHERE point_id = %s " |
||
462 | " AND utc_date_time BETWEEN %s AND %s " |
||
463 | " ORDER BY utc_date_time ") |
||
464 | cursor_historical.execute(query, (point['id'], |
||
465 | reporting_start_datetime_utc, |
||
466 | reporting_end_datetime_utc)) |
||
467 | rows = cursor_historical.fetchall() |
||
468 | |||
469 | if rows is not None and len(rows) > 0: |
||
470 | for row in rows: |
||
471 | current_datetime_local = row[0].replace(tzinfo=timezone.utc) + \ |
||
472 | timedelta(minutes=timezone_offset) |
||
473 | current_datetime = current_datetime_local.strftime('%Y-%m-%dT%H:%M:%S') |
||
474 | point_timestamps.append(current_datetime) |
||
475 | point_values.append(row[1]) |
||
476 | |||
477 | parameters_data['names'].append(point['name'] + ' (' + point['units'] + ')') |
||
478 | parameters_data['timestamps'].append(point_timestamps) |
||
479 | parameters_data['values'].append(point_values) |
||
480 | |||
481 | ################################################################################################################ |
||
482 | # Step 10: query associated equipments energy carbon dioxide emissions |
||
483 | ################################################################################################################ |
||
484 | associated_equipment_data = dict() |
||
485 | |||
486 | if energy_category_set is not None and len(energy_category_set) > 0: |
||
487 | for energy_category_id in energy_category_set: |
||
488 | associated_equipment_data[energy_category_id] = dict() |
||
489 | associated_equipment_data[energy_category_id]['associated_equipment_names'] = list() |
||
490 | associated_equipment_data[energy_category_id]['subtotals'] = list() |
||
491 | for associated_equipment in associated_equipment_list: |
||
492 | associated_equipment_data[energy_category_id]['associated_equipment_names'].append( |
||
493 | associated_equipment['name']) |
||
494 | |||
495 | cursor_carbon.execute(" SELECT SUM(actual_value) " |
||
496 | " FROM tbl_equipment_input_category_hourly " |
||
497 | " WHERE equipment_id = %s " |
||
498 | " AND energy_category_id = %s " |
||
499 | " AND start_datetime_utc >= %s " |
||
500 | " AND start_datetime_utc < %s ", |
||
501 | (associated_equipment['id'], |
||
502 | energy_category_id, |
||
503 | reporting_start_datetime_utc, |
||
504 | reporting_end_datetime_utc)) |
||
505 | row_subtotal = cursor_carbon.fetchone() |
||
506 | |||
507 | subtotal = Decimal(0.0) if (row_subtotal is None or row_subtotal[0] is None) else row_subtotal[0] |
||
508 | associated_equipment_data[energy_category_id]['subtotals'].append(subtotal) |
||
509 | |||
510 | ################################################################################################################ |
||
511 | # Step 11: construct the report |
||
512 | ################################################################################################################ |
||
513 | if cursor_system: |
||
514 | cursor_system.close() |
||
515 | if cnx_system: |
||
516 | cnx_system.close() |
||
517 | |||
518 | if cursor_carbon: |
||
519 | cursor_carbon.close() |
||
520 | if cnx_carbon: |
||
521 | cnx_carbon.close() |
||
522 | |||
523 | if cursor_historical: |
||
524 | cursor_historical.close() |
||
525 | if cnx_historical: |
||
526 | cnx_historical.close() |
||
527 | |||
528 | result = dict() |
||
529 | |||
530 | result['combined_equipment'] = dict() |
||
531 | result['combined_equipment']['name'] = combined_equipment['name'] |
||
532 | |||
533 | result['base_period'] = dict() |
||
534 | result['base_period']['names'] = list() |
||
535 | result['base_period']['units'] = list() |
||
536 | result['base_period']['timestamps'] = list() |
||
537 | result['base_period']['values'] = list() |
||
538 | result['base_period']['subtotals'] = list() |
||
539 | result['base_period']['total'] = Decimal(0.0) |
||
540 | if energy_category_set is not None and len(energy_category_set) > 0: |
||
541 | for energy_category_id in energy_category_set: |
||
542 | result['base_period']['names'].append(energy_category_dict[energy_category_id]['name']) |
||
543 | result['base_period']['units'].append('KG') |
||
544 | result['base_period']['timestamps'].append(base[energy_category_id]['timestamps']) |
||
545 | result['base_period']['values'].append(base[energy_category_id]['values']) |
||
546 | result['base_period']['subtotals'].append(base[energy_category_id]['subtotal']) |
||
547 | result['base_period']['total'] += base[energy_category_id]['subtotal'] |
||
548 | |||
549 | result['reporting_period'] = dict() |
||
550 | result['reporting_period']['names'] = list() |
||
551 | result['reporting_period']['energy_category_ids'] = list() |
||
552 | result['reporting_period']['units'] = list() |
||
553 | result['reporting_period']['timestamps'] = list() |
||
554 | result['reporting_period']['values'] = list() |
||
555 | result['reporting_period']['subtotals'] = list() |
||
556 | result['reporting_period']['toppeaks'] = list() |
||
557 | result['reporting_period']['onpeaks'] = list() |
||
558 | result['reporting_period']['midpeaks'] = list() |
||
559 | result['reporting_period']['offpeaks'] = list() |
||
560 | result['reporting_period']['increment_rates'] = list() |
||
561 | result['reporting_period']['total'] = Decimal(0.0) |
||
562 | result['reporting_period']['total_increment_rate'] = Decimal(0.0) |
||
563 | result['reporting_period']['total_unit'] = 'KG' |
||
564 | |||
565 | if energy_category_set is not None and len(energy_category_set) > 0: |
||
566 | for energy_category_id in energy_category_set: |
||
567 | result['reporting_period']['names'].append(energy_category_dict[energy_category_id]['name']) |
||
568 | result['reporting_period']['energy_category_ids'].append(energy_category_id) |
||
569 | result['reporting_period']['units'].append('KG') |
||
570 | result['reporting_period']['timestamps'].append(reporting[energy_category_id]['timestamps']) |
||
571 | result['reporting_period']['values'].append(reporting[energy_category_id]['values']) |
||
572 | result['reporting_period']['subtotals'].append(reporting[energy_category_id]['subtotal']) |
||
573 | result['reporting_period']['toppeaks'].append(reporting[energy_category_id]['toppeak']) |
||
574 | result['reporting_period']['onpeaks'].append(reporting[energy_category_id]['onpeak']) |
||
575 | result['reporting_period']['midpeaks'].append(reporting[energy_category_id]['midpeak']) |
||
576 | result['reporting_period']['offpeaks'].append(reporting[energy_category_id]['offpeak']) |
||
577 | result['reporting_period']['increment_rates'].append( |
||
578 | (reporting[energy_category_id]['subtotal'] - base[energy_category_id]['subtotal']) / |
||
579 | base[energy_category_id]['subtotal'] |
||
580 | if base[energy_category_id]['subtotal'] > 0.0 else None) |
||
581 | result['reporting_period']['total'] += reporting[energy_category_id]['subtotal'] |
||
582 | |||
583 | result['reporting_period']['total_increment_rate'] = \ |
||
584 | (result['reporting_period']['total'] - result['base_period']['total']) / result['base_period']['total'] \ |
||
585 | if result['base_period']['total'] > Decimal(0.0) else None |
||
586 | |||
587 | result['parameters'] = { |
||
588 | "names": parameters_data['names'], |
||
589 | "timestamps": parameters_data['timestamps'], |
||
590 | "values": parameters_data['values'] |
||
591 | } |
||
592 | |||
593 | result['associated_equipment'] = dict() |
||
594 | result['associated_equipment']['energy_category_names'] = list() |
||
595 | result['associated_equipment']['units'] = list() |
||
596 | result['associated_equipment']['associated_equipment_names_array'] = list() |
||
597 | result['associated_equipment']['subtotals_array'] = list() |
||
598 | result['associated_equipment']['total_unit'] = 'KG' |
||
599 | if energy_category_set is not None and len(energy_category_set) > 0: |
||
600 | for energy_category_id in energy_category_set: |
||
601 | result['associated_equipment']['energy_category_names'].append( |
||
602 | energy_category_dict[energy_category_id]['name']) |
||
603 | result['associated_equipment']['units'].append('KG') |
||
604 | result['associated_equipment']['associated_equipment_names_array'].append( |
||
605 | associated_equipment_data[energy_category_id]['associated_equipment_names']) |
||
606 | result['associated_equipment']['subtotals_array'].append( |
||
607 | associated_equipment_data[energy_category_id]['subtotals']) |
||
608 | |||
609 | # export result to Excel file and then encode the file to base64 string |
||
610 | result['excel_bytes_base64'] = excelexporters.combinedequipmentcarbon.export(result, |
||
611 | combined_equipment['name'], |
||
612 | reporting_start_datetime_local, |
||
613 | reporting_end_datetime_local, |
||
614 | period_type) |
||
615 | resp.text = json.dumps(result) |
||
616 |