1
|
|
|
""" |
2
|
|
|
Tenant Statistics Report API |
3
|
|
|
|
4
|
|
|
This module provides REST API endpoints for generating tenant statistics reports. |
5
|
|
|
It analyzes statistical data and performance metrics for tenants to provide |
6
|
|
|
comprehensive insights into tenant performance and operational patterns. |
7
|
|
|
|
8
|
|
|
Key Features: |
9
|
|
|
- Tenant statistical analysis |
10
|
|
|
- Performance metrics calculation |
11
|
|
|
- Statistical trend analysis |
12
|
|
|
- Performance benchmarking |
13
|
|
|
- Excel export functionality |
14
|
|
|
- Statistical insights and patterns |
15
|
|
|
|
16
|
|
|
Report Components: |
17
|
|
|
- Tenant statistics summary |
18
|
|
|
- Performance metrics and KPIs |
19
|
|
|
- Statistical trend analysis |
20
|
|
|
- Benchmarking data |
21
|
|
|
- Performance indicators |
22
|
|
|
- Statistical patterns and insights |
23
|
|
|
|
24
|
|
|
The module uses Falcon framework for REST API and includes: |
25
|
|
|
- Database queries for statistical data |
26
|
|
|
- Statistical calculation algorithms |
27
|
|
|
- Performance analysis tools |
28
|
|
|
- Excel export via excelexporters |
29
|
|
|
- Multi-language support |
30
|
|
|
- User authentication and authorization |
31
|
|
|
""" |
32
|
|
|
|
33
|
|
|
import re |
34
|
|
|
from datetime import datetime, timedelta, timezone |
35
|
|
|
from decimal import Decimal |
36
|
|
|
import falcon |
37
|
|
|
import mysql.connector |
38
|
|
|
import simplejson as json |
39
|
|
|
import config |
40
|
|
|
import excelexporters.tenantstatistics |
41
|
|
|
from core import utilities |
42
|
|
|
from core.useractivity import access_control, api_key_control |
43
|
|
|
|
44
|
|
|
|
45
|
|
View Code Duplication |
class Reporting: |
|
|
|
|
46
|
|
|
def __init__(self): |
47
|
|
|
""""Initializes Reporting""" |
48
|
|
|
pass |
49
|
|
|
|
50
|
|
|
@staticmethod |
51
|
|
|
def on_options(req, resp): |
52
|
|
|
_ = req |
53
|
|
|
resp.status = falcon.HTTP_200 |
54
|
|
|
|
55
|
|
|
#################################################################################################################### |
56
|
|
|
# PROCEDURES |
57
|
|
|
# Step 1: valid parameters |
58
|
|
|
# Step 2: query the tenant |
59
|
|
|
# Step 3: query energy categories |
60
|
|
|
# Step 4: query associated sensors |
61
|
|
|
# Step 5: query associated points |
62
|
|
|
# Step 6: query base period energy input |
63
|
|
|
# Step 7: query reporting period energy input |
64
|
|
|
# Step 8: query tariff data |
65
|
|
|
# Step 9: query associated sensors and points data |
66
|
|
|
# Step 10: construct the report |
67
|
|
|
#################################################################################################################### |
68
|
|
|
@staticmethod |
69
|
|
|
def on_get(req, resp): |
70
|
|
|
if 'API-KEY' not in req.headers or \ |
71
|
|
|
not isinstance(req.headers['API-KEY'], str) or \ |
72
|
|
|
len(str.strip(req.headers['API-KEY'])) == 0: |
73
|
|
|
access_control(req) |
74
|
|
|
else: |
75
|
|
|
api_key_control(req) |
76
|
|
|
print(req.params) |
77
|
|
|
tenant_id = req.params.get('tenantid') |
78
|
|
|
tenant_uuid = req.params.get('tenantuuid') |
79
|
|
|
period_type = req.params.get('periodtype') |
80
|
|
|
base_period_start_datetime_local = req.params.get('baseperiodstartdatetime') |
81
|
|
|
base_period_end_datetime_local = req.params.get('baseperiodenddatetime') |
82
|
|
|
reporting_period_start_datetime_local = req.params.get('reportingperiodstartdatetime') |
83
|
|
|
reporting_period_end_datetime_local = req.params.get('reportingperiodenddatetime') |
84
|
|
|
language = req.params.get('language') |
85
|
|
|
quick_mode = req.params.get('quickmode') |
86
|
|
|
|
87
|
|
|
################################################################################################################ |
88
|
|
|
# Step 1: valid parameters |
89
|
|
|
################################################################################################################ |
90
|
|
|
if tenant_id is None and tenant_uuid is None: |
91
|
|
|
raise falcon.HTTPError(status=falcon.HTTP_400, |
92
|
|
|
title='API.BAD_REQUEST', |
93
|
|
|
description='API.INVALID_TENANT_ID') |
94
|
|
|
|
95
|
|
|
if tenant_id is not None: |
96
|
|
|
tenant_id = str.strip(tenant_id) |
97
|
|
|
if not tenant_id.isdigit() or int(tenant_id) <= 0: |
98
|
|
|
raise falcon.HTTPError(status=falcon.HTTP_400, |
99
|
|
|
title='API.BAD_REQUEST', |
100
|
|
|
description='API.INVALID_TENANT_ID') |
101
|
|
|
|
102
|
|
|
if tenant_uuid is not None: |
103
|
|
|
regex = re.compile(r'^[a-f0-9]{8}-?[a-f0-9]{4}-?4[a-f0-9]{3}-?[89ab][a-f0-9]{3}-?[a-f0-9]{12}\Z', re.I) |
104
|
|
|
match = regex.match(str.strip(tenant_uuid)) |
105
|
|
|
if not bool(match): |
106
|
|
|
raise falcon.HTTPError(status=falcon.HTTP_400, |
107
|
|
|
title='API.BAD_REQUEST', |
108
|
|
|
description='API.INVALID_TENANT_UUID') |
109
|
|
|
|
110
|
|
|
if period_type is None: |
111
|
|
|
raise falcon.HTTPError(status=falcon.HTTP_400, title='API.BAD_REQUEST', |
112
|
|
|
description='API.INVALID_PERIOD_TYPE') |
113
|
|
|
else: |
114
|
|
|
period_type = str.strip(period_type) |
115
|
|
|
if period_type not in ['hourly', 'daily', 'weekly', 'monthly', 'yearly']: |
116
|
|
|
raise falcon.HTTPError(status=falcon.HTTP_400, title='API.BAD_REQUEST', |
117
|
|
|
description='API.INVALID_PERIOD_TYPE') |
118
|
|
|
|
119
|
|
|
timezone_offset = int(config.utc_offset[1:3]) * 60 + int(config.utc_offset[4:6]) |
120
|
|
|
if config.utc_offset[0] == '-': |
121
|
|
|
timezone_offset = -timezone_offset |
122
|
|
|
|
123
|
|
|
base_start_datetime_utc = None |
124
|
|
|
if base_period_start_datetime_local is not None and len(str.strip(base_period_start_datetime_local)) > 0: |
125
|
|
|
base_period_start_datetime_local = str.strip(base_period_start_datetime_local) |
126
|
|
|
try: |
127
|
|
|
base_start_datetime_utc = datetime.strptime(base_period_start_datetime_local, '%Y-%m-%dT%H:%M:%S') |
128
|
|
|
except ValueError: |
129
|
|
|
raise falcon.HTTPError(status=falcon.HTTP_400, title='API.BAD_REQUEST', |
130
|
|
|
description="API.INVALID_BASE_PERIOD_START_DATETIME") |
131
|
|
|
base_start_datetime_utc = \ |
132
|
|
|
base_start_datetime_utc.replace(tzinfo=timezone.utc) - timedelta(minutes=timezone_offset) |
133
|
|
|
# nomalize the start datetime |
134
|
|
|
if config.minutes_to_count == 30 and base_start_datetime_utc.minute >= 30: |
135
|
|
|
base_start_datetime_utc = base_start_datetime_utc.replace(minute=30, second=0, microsecond=0) |
136
|
|
|
else: |
137
|
|
|
base_start_datetime_utc = base_start_datetime_utc.replace(minute=0, second=0, microsecond=0) |
138
|
|
|
|
139
|
|
|
base_end_datetime_utc = None |
140
|
|
|
if base_period_end_datetime_local is not None and len(str.strip(base_period_end_datetime_local)) > 0: |
141
|
|
|
base_period_end_datetime_local = str.strip(base_period_end_datetime_local) |
142
|
|
|
try: |
143
|
|
|
base_end_datetime_utc = datetime.strptime(base_period_end_datetime_local, '%Y-%m-%dT%H:%M:%S') |
144
|
|
|
except ValueError: |
145
|
|
|
raise falcon.HTTPError(status=falcon.HTTP_400, title='API.BAD_REQUEST', |
146
|
|
|
description="API.INVALID_BASE_PERIOD_END_DATETIME") |
147
|
|
|
base_end_datetime_utc = \ |
148
|
|
|
base_end_datetime_utc.replace(tzinfo=timezone.utc) - timedelta(minutes=timezone_offset) |
149
|
|
|
|
150
|
|
|
if base_start_datetime_utc is not None and base_end_datetime_utc is not None and \ |
151
|
|
|
base_start_datetime_utc >= base_end_datetime_utc: |
152
|
|
|
raise falcon.HTTPError(status=falcon.HTTP_400, title='API.BAD_REQUEST', |
153
|
|
|
description='API.INVALID_BASE_PERIOD_END_DATETIME') |
154
|
|
|
|
155
|
|
|
if reporting_period_start_datetime_local is None: |
156
|
|
|
raise falcon.HTTPError(status=falcon.HTTP_400, title='API.BAD_REQUEST', |
157
|
|
|
description="API.INVALID_REPORTING_PERIOD_START_DATETIME") |
158
|
|
|
else: |
159
|
|
|
reporting_period_start_datetime_local = str.strip(reporting_period_start_datetime_local) |
160
|
|
|
try: |
161
|
|
|
reporting_start_datetime_utc = datetime.strptime(reporting_period_start_datetime_local, |
162
|
|
|
'%Y-%m-%dT%H:%M:%S') |
163
|
|
|
except ValueError: |
164
|
|
|
raise falcon.HTTPError(status=falcon.HTTP_400, title='API.BAD_REQUEST', |
165
|
|
|
description="API.INVALID_REPORTING_PERIOD_START_DATETIME") |
166
|
|
|
reporting_start_datetime_utc = \ |
167
|
|
|
reporting_start_datetime_utc.replace(tzinfo=timezone.utc) - timedelta(minutes=timezone_offset) |
168
|
|
|
# nomalize the start datetime |
169
|
|
|
if config.minutes_to_count == 30 and reporting_start_datetime_utc.minute >= 30: |
170
|
|
|
reporting_start_datetime_utc = reporting_start_datetime_utc.replace(minute=30, second=0, microsecond=0) |
171
|
|
|
else: |
172
|
|
|
reporting_start_datetime_utc = reporting_start_datetime_utc.replace(minute=0, second=0, microsecond=0) |
173
|
|
|
|
174
|
|
|
if reporting_period_end_datetime_local is None: |
175
|
|
|
raise falcon.HTTPError(status=falcon.HTTP_400, title='API.BAD_REQUEST', |
176
|
|
|
description="API.INVALID_REPORTING_PERIOD_END_DATETIME") |
177
|
|
|
else: |
178
|
|
|
reporting_period_end_datetime_local = str.strip(reporting_period_end_datetime_local) |
179
|
|
|
try: |
180
|
|
|
reporting_end_datetime_utc = datetime.strptime(reporting_period_end_datetime_local, |
181
|
|
|
'%Y-%m-%dT%H:%M:%S').replace(tzinfo=timezone.utc) - \ |
182
|
|
|
timedelta(minutes=timezone_offset) |
183
|
|
|
except ValueError: |
184
|
|
|
raise falcon.HTTPError(status=falcon.HTTP_400, title='API.BAD_REQUEST', |
185
|
|
|
description="API.INVALID_REPORTING_PERIOD_END_DATETIME") |
186
|
|
|
|
187
|
|
|
if reporting_start_datetime_utc >= reporting_end_datetime_utc: |
188
|
|
|
raise falcon.HTTPError(status=falcon.HTTP_400, title='API.BAD_REQUEST', |
189
|
|
|
description='API.INVALID_REPORTING_PERIOD_END_DATETIME') |
190
|
|
|
|
191
|
|
|
# if turn quick mode on, do not return parameters data and excel file |
192
|
|
|
is_quick_mode = False |
193
|
|
|
if quick_mode is not None and \ |
194
|
|
|
len(str.strip(quick_mode)) > 0 and \ |
195
|
|
|
str.lower(str.strip(quick_mode)) in ('true', 't', 'on', 'yes', 'y'): |
196
|
|
|
is_quick_mode = True |
197
|
|
|
|
198
|
|
|
trans = utilities.get_translation(language) |
199
|
|
|
trans.install() |
200
|
|
|
_ = trans.gettext |
201
|
|
|
|
202
|
|
|
################################################################################################################ |
203
|
|
|
# Step 2: query the tenant |
204
|
|
|
################################################################################################################ |
205
|
|
|
cnx_system = mysql.connector.connect(**config.myems_system_db) |
206
|
|
|
cursor_system = cnx_system.cursor() |
207
|
|
|
|
208
|
|
|
cnx_energy = mysql.connector.connect(**config.myems_energy_db) |
209
|
|
|
cursor_energy = cnx_energy.cursor() |
210
|
|
|
|
211
|
|
|
cnx_historical = mysql.connector.connect(**config.myems_historical_db) |
212
|
|
|
cursor_historical = cnx_historical.cursor() |
213
|
|
|
|
214
|
|
|
if tenant_id is not None: |
215
|
|
|
cursor_system.execute(" SELECT id, name, area, cost_center_id " |
216
|
|
|
" FROM tbl_tenants " |
217
|
|
|
" WHERE id = %s ", (tenant_id,)) |
218
|
|
|
row_tenant = cursor_system.fetchone() |
219
|
|
|
elif tenant_uuid is not None: |
220
|
|
|
cursor_system.execute(" SELECT id, name, area, cost_center_id " |
221
|
|
|
" FROM tbl_tenants " |
222
|
|
|
" WHERE uuid = %s ", (tenant_uuid,)) |
223
|
|
|
row_tenant = cursor_system.fetchone() |
224
|
|
|
|
225
|
|
|
if row_tenant is None: |
|
|
|
|
226
|
|
|
if cursor_system: |
227
|
|
|
cursor_system.close() |
228
|
|
|
if cnx_system: |
229
|
|
|
cnx_system.close() |
230
|
|
|
|
231
|
|
|
if cursor_energy: |
232
|
|
|
cursor_energy.close() |
233
|
|
|
if cnx_energy: |
234
|
|
|
cnx_energy.close() |
235
|
|
|
|
236
|
|
|
if cursor_historical: |
237
|
|
|
cursor_historical.close() |
238
|
|
|
if cnx_historical: |
239
|
|
|
cnx_historical.close() |
240
|
|
|
raise falcon.HTTPError(status=falcon.HTTP_404, title='API.NOT_FOUND', description='API.TENANT_NOT_FOUND') |
241
|
|
|
|
242
|
|
|
tenant = dict() |
243
|
|
|
tenant['id'] = row_tenant[0] |
244
|
|
|
tenant['name'] = row_tenant[1] |
245
|
|
|
tenant['area'] = row_tenant[2] |
246
|
|
|
tenant['cost_center_id'] = row_tenant[3] |
247
|
|
|
|
248
|
|
|
################################################################################################################ |
249
|
|
|
# Step 3: query energy categories |
250
|
|
|
################################################################################################################ |
251
|
|
|
energy_category_set = set() |
252
|
|
|
# query energy categories in base period |
253
|
|
|
cursor_energy.execute(" SELECT DISTINCT(energy_category_id) " |
254
|
|
|
" FROM tbl_tenant_input_category_hourly " |
255
|
|
|
" WHERE tenant_id = %s " |
256
|
|
|
" AND start_datetime_utc >= %s " |
257
|
|
|
" AND start_datetime_utc < %s ", |
258
|
|
|
(tenant['id'], base_start_datetime_utc, base_end_datetime_utc)) |
259
|
|
|
rows_energy_categories = cursor_energy.fetchall() |
260
|
|
|
if rows_energy_categories is not None and len(rows_energy_categories) > 0: |
261
|
|
|
for row_energy_category in rows_energy_categories: |
262
|
|
|
energy_category_set.add(row_energy_category[0]) |
263
|
|
|
|
264
|
|
|
# query energy categories in reporting period |
265
|
|
|
cursor_energy.execute(" SELECT DISTINCT(energy_category_id) " |
266
|
|
|
" FROM tbl_tenant_input_category_hourly " |
267
|
|
|
" WHERE tenant_id = %s " |
268
|
|
|
" AND start_datetime_utc >= %s " |
269
|
|
|
" AND start_datetime_utc < %s ", |
270
|
|
|
(tenant['id'], reporting_start_datetime_utc, reporting_end_datetime_utc)) |
271
|
|
|
rows_energy_categories = cursor_energy.fetchall() |
272
|
|
|
if rows_energy_categories is not None and len(rows_energy_categories) > 0: |
273
|
|
|
for row_energy_category in rows_energy_categories: |
274
|
|
|
energy_category_set.add(row_energy_category[0]) |
275
|
|
|
|
276
|
|
|
# query all energy categories in base period and reporting period |
277
|
|
|
cursor_system.execute(" SELECT id, name, unit_of_measure, kgce, kgco2e " |
278
|
|
|
" FROM tbl_energy_categories " |
279
|
|
|
" ORDER BY id ", ) |
280
|
|
|
rows_energy_categories = cursor_system.fetchall() |
281
|
|
|
if rows_energy_categories is None or len(rows_energy_categories) == 0: |
282
|
|
|
if cursor_system: |
283
|
|
|
cursor_system.close() |
284
|
|
|
if cnx_system: |
285
|
|
|
cnx_system.close() |
286
|
|
|
|
287
|
|
|
if cursor_energy: |
288
|
|
|
cursor_energy.close() |
289
|
|
|
if cnx_energy: |
290
|
|
|
cnx_energy.close() |
291
|
|
|
|
292
|
|
|
if cursor_historical: |
293
|
|
|
cursor_historical.close() |
294
|
|
|
if cnx_historical: |
295
|
|
|
cnx_historical.close() |
296
|
|
|
raise falcon.HTTPError(status=falcon.HTTP_404, |
297
|
|
|
title='API.NOT_FOUND', |
298
|
|
|
description='API.ENERGY_CATEGORY_NOT_FOUND') |
299
|
|
|
energy_category_dict = dict() |
300
|
|
|
for row_energy_category in rows_energy_categories: |
301
|
|
|
if row_energy_category[0] in energy_category_set: |
302
|
|
|
energy_category_dict[row_energy_category[0]] = {"name": row_energy_category[1], |
303
|
|
|
"unit_of_measure": row_energy_category[2], |
304
|
|
|
"kgce": row_energy_category[3], |
305
|
|
|
"kgco2e": row_energy_category[4]} |
306
|
|
|
|
307
|
|
|
################################################################################################################ |
308
|
|
|
# Step 4: query associated sensors |
309
|
|
|
################################################################################################################ |
310
|
|
|
point_list = list() |
311
|
|
|
cursor_system.execute(" SELECT p.id, p.name, p.units, p.object_type " |
312
|
|
|
" FROM tbl_tenants t, tbl_sensors s, tbl_tenants_sensors ts, " |
313
|
|
|
" tbl_points p, tbl_sensors_points sp " |
314
|
|
|
" WHERE t.id = %s AND t.id = ts.tenant_id AND ts.sensor_id = s.id " |
315
|
|
|
" AND s.id = sp.sensor_id AND sp.point_id = p.id " |
316
|
|
|
" ORDER BY p.id ", (tenant['id'],)) |
317
|
|
|
rows_points = cursor_system.fetchall() |
318
|
|
|
if rows_points is not None and len(rows_points) > 0: |
319
|
|
|
for row in rows_points: |
320
|
|
|
point_list.append({"id": row[0], "name": row[1], "units": row[2], "object_type": row[3]}) |
321
|
|
|
|
322
|
|
|
################################################################################################################ |
323
|
|
|
# Step 5: query associated points |
324
|
|
|
################################################################################################################ |
325
|
|
|
cursor_system.execute(" SELECT p.id, p.name, p.units, p.object_type " |
326
|
|
|
" FROM tbl_tenants t, tbl_tenants_points tp, tbl_points p " |
327
|
|
|
" WHERE t.id = %s AND t.id = tp.tenant_id AND tp.point_id = p.id " |
328
|
|
|
" ORDER BY p.id ", (tenant['id'],)) |
329
|
|
|
rows_points = cursor_system.fetchall() |
330
|
|
|
if rows_points is not None and len(rows_points) > 0: |
331
|
|
|
for row in rows_points: |
332
|
|
|
point_list.append({"id": row[0], "name": row[1], "units": row[2], "object_type": row[3]}) |
333
|
|
|
|
334
|
|
|
################################################################################################################ |
335
|
|
|
# Step 6: query base period energy input |
336
|
|
|
################################################################################################################ |
337
|
|
|
base = dict() |
338
|
|
|
if energy_category_set is not None and len(energy_category_set) > 0: |
339
|
|
|
for energy_category_id in energy_category_set: |
340
|
|
|
base[energy_category_id] = dict() |
341
|
|
|
base[energy_category_id]['timestamps'] = list() |
342
|
|
|
base[energy_category_id]['values'] = list() |
343
|
|
|
base[energy_category_id]['subtotal'] = Decimal(0.0) |
344
|
|
|
base[energy_category_id]['mean'] = None |
345
|
|
|
base[energy_category_id]['median'] = None |
346
|
|
|
base[energy_category_id]['minimum'] = None |
347
|
|
|
base[energy_category_id]['maximum'] = None |
348
|
|
|
base[energy_category_id]['stdev'] = None |
349
|
|
|
base[energy_category_id]['variance'] = None |
350
|
|
|
|
351
|
|
|
cursor_energy.execute(" SELECT start_datetime_utc, actual_value " |
352
|
|
|
" FROM tbl_tenant_input_category_hourly " |
353
|
|
|
" WHERE tenant_id = %s " |
354
|
|
|
" AND energy_category_id = %s " |
355
|
|
|
" AND start_datetime_utc >= %s " |
356
|
|
|
" AND start_datetime_utc < %s " |
357
|
|
|
" ORDER BY start_datetime_utc ", |
358
|
|
|
(tenant['id'], |
359
|
|
|
energy_category_id, |
360
|
|
|
base_start_datetime_utc, |
361
|
|
|
base_end_datetime_utc)) |
362
|
|
|
rows_tenant_hourly = cursor_energy.fetchall() |
363
|
|
|
|
364
|
|
|
rows_tenant_periodically, \ |
365
|
|
|
base[energy_category_id]['mean'], \ |
366
|
|
|
base[energy_category_id]['median'], \ |
367
|
|
|
base[energy_category_id]['minimum'], \ |
368
|
|
|
base[energy_category_id]['maximum'], \ |
369
|
|
|
base[energy_category_id]['stdev'], \ |
370
|
|
|
base[energy_category_id]['variance'] = \ |
371
|
|
|
utilities.statistics_hourly_data_by_period(rows_tenant_hourly, |
372
|
|
|
base_start_datetime_utc, |
373
|
|
|
base_end_datetime_utc, |
374
|
|
|
period_type) |
375
|
|
|
|
376
|
|
|
for row_tenant_periodically in rows_tenant_periodically: |
377
|
|
|
current_datetime_local = row_tenant_periodically[0].replace(tzinfo=timezone.utc) + \ |
378
|
|
|
timedelta(minutes=timezone_offset) |
379
|
|
|
if period_type == 'hourly': |
380
|
|
|
current_datetime = current_datetime_local.isoformat()[0:19] |
381
|
|
|
elif period_type == 'daily': |
382
|
|
|
current_datetime = current_datetime_local.isoformat()[0:10] |
383
|
|
|
elif period_type == 'weekly': |
384
|
|
|
current_datetime = current_datetime_local.isoformat()[0:10] |
385
|
|
|
elif period_type == 'monthly': |
386
|
|
|
current_datetime = current_datetime_local.isoformat()[0:7] |
387
|
|
|
elif period_type == 'yearly': |
388
|
|
|
current_datetime = current_datetime_local.isoformat()[0:4] |
389
|
|
|
|
390
|
|
|
actual_value = Decimal(0.0) if row_tenant_periodically[1] is None else row_tenant_periodically[1] |
391
|
|
|
base[energy_category_id]['timestamps'].append(current_datetime) |
|
|
|
|
392
|
|
|
base[energy_category_id]['values'].append(actual_value) |
393
|
|
|
base[energy_category_id]['subtotal'] += actual_value |
394
|
|
|
|
395
|
|
|
################################################################################################################ |
396
|
|
|
# Step 7: query reporting period energy input |
397
|
|
|
################################################################################################################ |
398
|
|
|
reporting = dict() |
399
|
|
|
if energy_category_set is not None and len(energy_category_set) > 0: |
400
|
|
|
for energy_category_id in energy_category_set: |
401
|
|
|
reporting[energy_category_id] = dict() |
402
|
|
|
reporting[energy_category_id]['timestamps'] = list() |
403
|
|
|
reporting[energy_category_id]['values'] = list() |
404
|
|
|
reporting[energy_category_id]['subtotal'] = Decimal(0.0) |
405
|
|
|
reporting[energy_category_id]['mean'] = None |
406
|
|
|
reporting[energy_category_id]['median'] = None |
407
|
|
|
reporting[energy_category_id]['minimum'] = None |
408
|
|
|
reporting[energy_category_id]['maximum'] = None |
409
|
|
|
reporting[energy_category_id]['stdev'] = None |
410
|
|
|
reporting[energy_category_id]['variance'] = None |
411
|
|
|
|
412
|
|
|
cursor_energy.execute(" SELECT start_datetime_utc, actual_value " |
413
|
|
|
" FROM tbl_tenant_input_category_hourly " |
414
|
|
|
" WHERE tenant_id = %s " |
415
|
|
|
" AND energy_category_id = %s " |
416
|
|
|
" AND start_datetime_utc >= %s " |
417
|
|
|
" AND start_datetime_utc < %s " |
418
|
|
|
" ORDER BY start_datetime_utc ", |
419
|
|
|
(tenant['id'], |
420
|
|
|
energy_category_id, |
421
|
|
|
reporting_start_datetime_utc, |
422
|
|
|
reporting_end_datetime_utc)) |
423
|
|
|
rows_tenant_hourly = cursor_energy.fetchall() |
424
|
|
|
|
425
|
|
|
rows_tenant_periodically, \ |
426
|
|
|
reporting[energy_category_id]['mean'], \ |
427
|
|
|
reporting[energy_category_id]['median'], \ |
428
|
|
|
reporting[energy_category_id]['minimum'], \ |
429
|
|
|
reporting[energy_category_id]['maximum'], \ |
430
|
|
|
reporting[energy_category_id]['stdev'], \ |
431
|
|
|
reporting[energy_category_id]['variance'] = \ |
432
|
|
|
utilities.statistics_hourly_data_by_period(rows_tenant_hourly, |
433
|
|
|
reporting_start_datetime_utc, |
434
|
|
|
reporting_end_datetime_utc, |
435
|
|
|
period_type) |
436
|
|
|
|
437
|
|
|
for row_tenant_periodically in rows_tenant_periodically: |
438
|
|
|
current_datetime_local = row_tenant_periodically[0].replace(tzinfo=timezone.utc) + \ |
439
|
|
|
timedelta(minutes=timezone_offset) |
440
|
|
|
if period_type == 'hourly': |
441
|
|
|
current_datetime = current_datetime_local.isoformat()[0:19] |
442
|
|
|
elif period_type == 'daily': |
443
|
|
|
current_datetime = current_datetime_local.isoformat()[0:10] |
444
|
|
|
elif period_type == 'weekly': |
445
|
|
|
current_datetime = current_datetime_local.isoformat()[0:10] |
446
|
|
|
elif period_type == 'monthly': |
447
|
|
|
current_datetime = current_datetime_local.isoformat()[0:7] |
448
|
|
|
elif period_type == 'yearly': |
449
|
|
|
current_datetime = current_datetime_local.isoformat()[0:4] |
450
|
|
|
|
451
|
|
|
actual_value = Decimal(0.0) if row_tenant_periodically[1] is None else row_tenant_periodically[1] |
452
|
|
|
reporting[energy_category_id]['timestamps'].append(current_datetime) |
453
|
|
|
reporting[energy_category_id]['values'].append(actual_value) |
454
|
|
|
reporting[energy_category_id]['subtotal'] += actual_value |
455
|
|
|
|
456
|
|
|
################################################################################################################ |
457
|
|
|
# Step 8: query tariff data |
458
|
|
|
################################################################################################################ |
459
|
|
|
parameters_data = dict() |
460
|
|
|
parameters_data['names'] = list() |
461
|
|
|
parameters_data['timestamps'] = list() |
462
|
|
|
parameters_data['values'] = list() |
463
|
|
|
if config.is_tariff_appended and energy_category_set is not None and len(energy_category_set) > 0 \ |
464
|
|
|
and not is_quick_mode: |
465
|
|
|
for energy_category_id in energy_category_set: |
466
|
|
|
energy_category_tariff_dict = utilities.get_energy_category_tariffs(tenant['cost_center_id'], |
467
|
|
|
energy_category_id, |
468
|
|
|
reporting_start_datetime_utc, |
469
|
|
|
reporting_end_datetime_utc) |
470
|
|
|
tariff_timestamp_list = list() |
471
|
|
|
tariff_value_list = list() |
472
|
|
|
for k, v in energy_category_tariff_dict.items(): |
473
|
|
|
# convert k from utc to local |
474
|
|
|
k = k + timedelta(minutes=timezone_offset) |
475
|
|
|
tariff_timestamp_list.append(k.isoformat()[0:19]) |
476
|
|
|
tariff_value_list.append(v) |
477
|
|
|
|
478
|
|
|
parameters_data['names'].append(_('Tariff') + '-' + energy_category_dict[energy_category_id]['name']) |
479
|
|
|
parameters_data['timestamps'].append(tariff_timestamp_list) |
480
|
|
|
parameters_data['values'].append(tariff_value_list) |
481
|
|
|
|
482
|
|
|
################################################################################################################ |
483
|
|
|
# Step 9: query associated sensors and points data |
484
|
|
|
################################################################################################################ |
485
|
|
|
if not is_quick_mode: |
486
|
|
|
for point in point_list: |
487
|
|
|
point_values = [] |
488
|
|
|
point_timestamps = [] |
489
|
|
|
if point['object_type'] == 'ENERGY_VALUE': |
490
|
|
|
query = (" SELECT utc_date_time, actual_value " |
491
|
|
|
" FROM tbl_energy_value " |
492
|
|
|
" WHERE point_id = %s " |
493
|
|
|
" AND utc_date_time BETWEEN %s AND %s " |
494
|
|
|
" ORDER BY utc_date_time ") |
495
|
|
|
cursor_historical.execute(query, (point['id'], |
496
|
|
|
reporting_start_datetime_utc, |
497
|
|
|
reporting_end_datetime_utc)) |
498
|
|
|
rows = cursor_historical.fetchall() |
499
|
|
|
|
500
|
|
|
if rows is not None and len(rows) > 0: |
501
|
|
|
for row in rows: |
502
|
|
|
current_datetime_local = row[0].replace(tzinfo=timezone.utc) + \ |
503
|
|
|
timedelta(minutes=timezone_offset) |
504
|
|
|
current_datetime = current_datetime_local.isoformat()[0:19] |
505
|
|
|
point_timestamps.append(current_datetime) |
506
|
|
|
point_values.append(row[1]) |
507
|
|
|
elif point['object_type'] == 'ANALOG_VALUE': |
508
|
|
|
query = (" SELECT utc_date_time, actual_value " |
509
|
|
|
" FROM tbl_analog_value " |
510
|
|
|
" WHERE point_id = %s " |
511
|
|
|
" AND utc_date_time BETWEEN %s AND %s " |
512
|
|
|
" ORDER BY utc_date_time ") |
513
|
|
|
cursor_historical.execute(query, (point['id'], |
514
|
|
|
reporting_start_datetime_utc, |
515
|
|
|
reporting_end_datetime_utc)) |
516
|
|
|
rows = cursor_historical.fetchall() |
517
|
|
|
|
518
|
|
|
if rows is not None and len(rows) > 0: |
519
|
|
|
for row in rows: |
520
|
|
|
current_datetime_local = row[0].replace(tzinfo=timezone.utc) + \ |
521
|
|
|
timedelta(minutes=timezone_offset) |
522
|
|
|
current_datetime = current_datetime_local.isoformat()[0:19] |
523
|
|
|
point_timestamps.append(current_datetime) |
524
|
|
|
point_values.append(row[1]) |
525
|
|
|
elif point['object_type'] == 'DIGITAL_VALUE': |
526
|
|
|
query = (" SELECT utc_date_time, actual_value " |
527
|
|
|
" FROM tbl_digital_value " |
528
|
|
|
" WHERE point_id = %s " |
529
|
|
|
" AND utc_date_time BETWEEN %s AND %s " |
530
|
|
|
" ORDER BY utc_date_time ") |
531
|
|
|
cursor_historical.execute(query, (point['id'], |
532
|
|
|
reporting_start_datetime_utc, |
533
|
|
|
reporting_end_datetime_utc)) |
534
|
|
|
rows = cursor_historical.fetchall() |
535
|
|
|
|
536
|
|
|
if rows is not None and len(rows) > 0: |
537
|
|
|
for row in rows: |
538
|
|
|
current_datetime_local = row[0].replace(tzinfo=timezone.utc) + \ |
539
|
|
|
timedelta(minutes=timezone_offset) |
540
|
|
|
current_datetime = current_datetime_local.isoformat()[0:19] |
541
|
|
|
point_timestamps.append(current_datetime) |
542
|
|
|
point_values.append(row[1]) |
543
|
|
|
|
544
|
|
|
parameters_data['names'].append(point['name'] + ' (' + point['units'] + ')') |
545
|
|
|
parameters_data['timestamps'].append(point_timestamps) |
546
|
|
|
parameters_data['values'].append(point_values) |
547
|
|
|
|
548
|
|
|
################################################################################################################ |
549
|
|
|
# Step 10: construct the report |
550
|
|
|
################################################################################################################ |
551
|
|
|
if cursor_system: |
552
|
|
|
cursor_system.close() |
553
|
|
|
if cnx_system: |
554
|
|
|
cnx_system.close() |
555
|
|
|
|
556
|
|
|
if cursor_energy: |
557
|
|
|
cursor_energy.close() |
558
|
|
|
if cnx_energy: |
559
|
|
|
cnx_energy.close() |
560
|
|
|
|
561
|
|
|
if cursor_historical: |
562
|
|
|
cursor_historical.close() |
563
|
|
|
if cnx_historical: |
564
|
|
|
cnx_historical.close() |
565
|
|
|
|
566
|
|
|
result = dict() |
567
|
|
|
|
568
|
|
|
result['tenant'] = dict() |
569
|
|
|
result['tenant']['name'] = tenant['name'] |
570
|
|
|
result['tenant']['area'] = tenant['area'] |
571
|
|
|
|
572
|
|
|
result['base_period'] = dict() |
573
|
|
|
result['base_period']['names'] = list() |
574
|
|
|
result['base_period']['units'] = list() |
575
|
|
|
result['base_period']['timestamps'] = list() |
576
|
|
|
result['base_period']['values'] = list() |
577
|
|
|
result['base_period']['subtotals'] = list() |
578
|
|
|
result['base_period']['means'] = list() |
579
|
|
|
result['base_period']['medians'] = list() |
580
|
|
|
result['base_period']['minimums'] = list() |
581
|
|
|
result['base_period']['maximums'] = list() |
582
|
|
|
result['base_period']['stdevs'] = list() |
583
|
|
|
result['base_period']['variances'] = list() |
584
|
|
|
|
585
|
|
|
if energy_category_set is not None and len(energy_category_set) > 0: |
586
|
|
|
for energy_category_id in energy_category_set: |
587
|
|
|
result['base_period']['names'].append(energy_category_dict[energy_category_id]['name']) |
588
|
|
|
result['base_period']['units'].append(energy_category_dict[energy_category_id]['unit_of_measure']) |
589
|
|
|
result['base_period']['timestamps'].append(base[energy_category_id]['timestamps']) |
590
|
|
|
result['base_period']['values'].append(base[energy_category_id]['values']) |
591
|
|
|
result['base_period']['subtotals'].append(base[energy_category_id]['subtotal']) |
592
|
|
|
result['base_period']['means'].append(base[energy_category_id]['mean']) |
593
|
|
|
result['base_period']['medians'].append(base[energy_category_id]['median']) |
594
|
|
|
result['base_period']['minimums'].append(base[energy_category_id]['minimum']) |
595
|
|
|
result['base_period']['maximums'].append(base[energy_category_id]['maximum']) |
596
|
|
|
result['base_period']['stdevs'].append(base[energy_category_id]['stdev']) |
597
|
|
|
result['base_period']['variances'].append(base[energy_category_id]['variance']) |
598
|
|
|
|
599
|
|
|
result['reporting_period'] = dict() |
600
|
|
|
result['reporting_period']['names'] = list() |
601
|
|
|
result['reporting_period']['energy_category_ids'] = list() |
602
|
|
|
result['reporting_period']['units'] = list() |
603
|
|
|
result['reporting_period']['timestamps'] = list() |
604
|
|
|
result['reporting_period']['values'] = list() |
605
|
|
|
result['reporting_period']['rates'] = list() |
606
|
|
|
result['reporting_period']['subtotals'] = list() |
607
|
|
|
result['reporting_period']['means'] = list() |
608
|
|
|
result['reporting_period']['means_per_unit_area'] = list() |
609
|
|
|
result['reporting_period']['means_increment_rate'] = list() |
610
|
|
|
result['reporting_period']['medians'] = list() |
611
|
|
|
result['reporting_period']['medians_per_unit_area'] = list() |
612
|
|
|
result['reporting_period']['medians_increment_rate'] = list() |
613
|
|
|
result['reporting_period']['minimums'] = list() |
614
|
|
|
result['reporting_period']['minimums_per_unit_area'] = list() |
615
|
|
|
result['reporting_period']['minimums_increment_rate'] = list() |
616
|
|
|
result['reporting_period']['maximums'] = list() |
617
|
|
|
result['reporting_period']['maximums_per_unit_area'] = list() |
618
|
|
|
result['reporting_period']['maximums_increment_rate'] = list() |
619
|
|
|
result['reporting_period']['stdevs'] = list() |
620
|
|
|
result['reporting_period']['stdevs_per_unit_area'] = list() |
621
|
|
|
result['reporting_period']['stdevs_increment_rate'] = list() |
622
|
|
|
result['reporting_period']['variances'] = list() |
623
|
|
|
result['reporting_period']['variances_per_unit_area'] = list() |
624
|
|
|
result['reporting_period']['variances_increment_rate'] = list() |
625
|
|
|
|
626
|
|
|
if energy_category_set is not None and len(energy_category_set) > 0: |
627
|
|
|
for energy_category_id in energy_category_set: |
628
|
|
|
result['reporting_period']['names'].append(energy_category_dict[energy_category_id]['name']) |
629
|
|
|
result['reporting_period']['energy_category_ids'].append(energy_category_id) |
630
|
|
|
result['reporting_period']['units'].append(energy_category_dict[energy_category_id]['unit_of_measure']) |
631
|
|
|
result['reporting_period']['timestamps'].append(reporting[energy_category_id]['timestamps']) |
632
|
|
|
result['reporting_period']['values'].append(reporting[energy_category_id]['values']) |
633
|
|
|
result['reporting_period']['subtotals'].append(reporting[energy_category_id]['subtotal']) |
634
|
|
|
result['reporting_period']['means'].append(reporting[energy_category_id]['mean']) |
635
|
|
|
result['reporting_period']['means_per_unit_area'].append( |
636
|
|
|
reporting[energy_category_id]['mean'] / tenant['area'] |
637
|
|
|
if reporting[energy_category_id]['mean'] is not None and |
638
|
|
|
tenant['area'] is not None and |
639
|
|
|
tenant['area'] > Decimal(0.0) |
640
|
|
|
else None) |
641
|
|
|
result['reporting_period']['means_increment_rate'].append( |
642
|
|
|
(reporting[energy_category_id]['mean'] - base[energy_category_id]['mean']) / |
643
|
|
|
base[energy_category_id]['mean'] if (base[energy_category_id]['mean'] is not None and |
644
|
|
|
base[energy_category_id]['mean'] > Decimal(0.0)) |
645
|
|
|
else None) |
646
|
|
|
result['reporting_period']['medians'].append(reporting[energy_category_id]['median']) |
647
|
|
|
result['reporting_period']['medians_per_unit_area'].append( |
648
|
|
|
reporting[energy_category_id]['median'] / tenant['area'] |
649
|
|
|
if reporting[energy_category_id]['median'] is not None and |
650
|
|
|
tenant['area'] is not None and |
651
|
|
|
tenant['area'] > Decimal(0.0) |
652
|
|
|
else None) |
653
|
|
|
result['reporting_period']['medians_increment_rate'].append( |
654
|
|
|
(reporting[energy_category_id]['median'] - base[energy_category_id]['median']) / |
655
|
|
|
base[energy_category_id]['median'] if (base[energy_category_id]['median'] is not None and |
656
|
|
|
base[energy_category_id]['median'] > Decimal(0.0)) |
657
|
|
|
else None) |
658
|
|
|
result['reporting_period']['minimums'].append(reporting[energy_category_id]['minimum']) |
659
|
|
|
result['reporting_period']['minimums_per_unit_area'].append( |
660
|
|
|
reporting[energy_category_id]['minimum'] / tenant['area'] |
661
|
|
|
if reporting[energy_category_id]['minimum'] is not None and |
662
|
|
|
tenant['area'] is not None and |
663
|
|
|
tenant['area'] > Decimal(0.0) |
664
|
|
|
else None) |
665
|
|
|
result['reporting_period']['minimums_increment_rate'].append( |
666
|
|
|
(reporting[energy_category_id]['minimum'] - base[energy_category_id]['minimum']) / |
667
|
|
|
base[energy_category_id]['minimum'] if (base[energy_category_id]['minimum'] is not None and |
668
|
|
|
base[energy_category_id]['minimum'] > Decimal(0.0)) |
669
|
|
|
else None) |
670
|
|
|
result['reporting_period']['maximums'].append(reporting[energy_category_id]['maximum']) |
671
|
|
|
result['reporting_period']['maximums_per_unit_area'].append( |
672
|
|
|
reporting[energy_category_id]['maximum'] / tenant['area'] |
673
|
|
|
if reporting[energy_category_id]['maximum'] is not None and |
674
|
|
|
tenant['area'] is not None and |
675
|
|
|
tenant['area'] > Decimal(0.0) |
676
|
|
|
else None) |
677
|
|
|
result['reporting_period']['maximums_increment_rate'].append( |
678
|
|
|
(reporting[energy_category_id]['maximum'] - base[energy_category_id]['maximum']) / |
679
|
|
|
base[energy_category_id]['maximum'] if (base[energy_category_id]['maximum'] is not None and |
680
|
|
|
base[energy_category_id]['maximum'] > Decimal(0.0)) |
681
|
|
|
else None) |
682
|
|
|
result['reporting_period']['stdevs'].append(reporting[energy_category_id]['stdev']) |
683
|
|
|
result['reporting_period']['stdevs_per_unit_area'].append( |
684
|
|
|
reporting[energy_category_id]['stdev'] / tenant['area'] |
685
|
|
|
if reporting[energy_category_id]['stdev'] is not None and |
686
|
|
|
tenant['area'] is not None and |
687
|
|
|
tenant['area'] > Decimal(0.0) |
688
|
|
|
else None) |
689
|
|
|
result['reporting_period']['stdevs_increment_rate'].append( |
690
|
|
|
(reporting[energy_category_id]['stdev'] - base[energy_category_id]['stdev']) / |
691
|
|
|
base[energy_category_id]['stdev'] if (base[energy_category_id]['stdev'] is not None and |
692
|
|
|
base[energy_category_id]['stdev'] > Decimal(0.0)) |
693
|
|
|
else None) |
694
|
|
|
result['reporting_period']['variances'].append(reporting[energy_category_id]['variance']) |
695
|
|
|
result['reporting_period']['variances_per_unit_area'].append( |
696
|
|
|
reporting[energy_category_id]['variance'] / tenant['area'] |
697
|
|
|
if reporting[energy_category_id]['variance'] is not None and |
698
|
|
|
tenant['area'] is not None and |
699
|
|
|
tenant['area'] > Decimal(0.0) |
700
|
|
|
else None) |
701
|
|
|
result['reporting_period']['variances_increment_rate'].append( |
702
|
|
|
(reporting[energy_category_id]['variance'] - base[energy_category_id]['variance']) / |
703
|
|
|
base[energy_category_id]['variance'] if (base[energy_category_id]['variance'] is not None and |
704
|
|
|
base[energy_category_id]['variance'] > Decimal(0.0)) |
705
|
|
|
else None) |
706
|
|
|
|
707
|
|
|
rate = list() |
708
|
|
|
for index, value in enumerate(reporting[energy_category_id]['values']): |
709
|
|
|
if index < len(base[energy_category_id]['values']) \ |
710
|
|
|
and base[energy_category_id]['values'][index] != 0 and value != 0: |
711
|
|
|
rate.append((value - base[energy_category_id]['values'][index]) |
712
|
|
|
/ base[energy_category_id]['values'][index]) |
713
|
|
|
else: |
714
|
|
|
rate.append(None) |
715
|
|
|
result['reporting_period']['rates'].append(rate) |
716
|
|
|
|
717
|
|
|
result['parameters'] = { |
718
|
|
|
"names": parameters_data['names'], |
719
|
|
|
"timestamps": parameters_data['timestamps'], |
720
|
|
|
"values": parameters_data['values'] |
721
|
|
|
} |
722
|
|
|
# export result to Excel file and then encode the file to base64 string |
723
|
|
|
if not is_quick_mode: |
724
|
|
|
result['excel_bytes_base64'] = excelexporters.tenantstatistics.export(result, |
725
|
|
|
tenant['name'], |
726
|
|
|
base_period_start_datetime_local, |
727
|
|
|
base_period_end_datetime_local, |
728
|
|
|
reporting_period_start_datetime_local, |
729
|
|
|
reporting_period_end_datetime_local, |
730
|
|
|
period_type, |
731
|
|
|
language) |
732
|
|
|
|
733
|
|
|
resp.text = json.dumps(result) |
734
|
|
|
|