Conditions | 130 |
Total Lines | 608 |
Code Lines | 463 |
Lines | 608 |
Ratio | 100 % |
Changes | 0 |
Small methods make your code easier to understand, in particular if combined with a good name. Besides, if your method is small, finding a good name is usually much easier.
For example, if you find yourself adding comments to a method's body, this is usually a good sign to extract the commented part to a new method, and use the comment as a starting point when coming up with a good name for this new method.
Commonly applied refactorings include:
If many parameters/temporary variables are present:
Complex classes like reports.tenantload.Reporting.on_get() often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.
Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.
1 | """ |
||
68 | @staticmethod |
||
69 | def on_get(req, resp): |
||
70 | if 'API-KEY' not in req.headers or \ |
||
71 | not isinstance(req.headers['API-KEY'], str) or \ |
||
72 | len(str.strip(req.headers['API-KEY'])) == 0: |
||
73 | access_control(req) |
||
74 | else: |
||
75 | api_key_control(req) |
||
76 | print(req.params) |
||
77 | tenant_id = req.params.get('tenantid') |
||
78 | tenant_uuid = req.params.get('tenantuuid') |
||
79 | period_type = req.params.get('periodtype') |
||
80 | base_period_start_datetime_local = req.params.get('baseperiodstartdatetime') |
||
81 | base_period_end_datetime_local = req.params.get('baseperiodenddatetime') |
||
82 | reporting_period_start_datetime_local = req.params.get('reportingperiodstartdatetime') |
||
83 | reporting_period_end_datetime_local = req.params.get('reportingperiodenddatetime') |
||
84 | language = req.params.get('language') |
||
85 | quick_mode = req.params.get('quickmode') |
||
86 | |||
87 | ################################################################################################################ |
||
88 | # Step 1: valid parameters |
||
89 | ################################################################################################################ |
||
90 | if tenant_id is None and tenant_uuid is None: |
||
91 | raise falcon.HTTPError(status=falcon.HTTP_400, |
||
92 | title='API.BAD_REQUEST', |
||
93 | description='API.INVALID_TENANT_ID') |
||
94 | |||
95 | if tenant_id is not None: |
||
96 | tenant_id = str.strip(tenant_id) |
||
97 | if not tenant_id.isdigit() or int(tenant_id) <= 0: |
||
98 | raise falcon.HTTPError(status=falcon.HTTP_400, |
||
99 | title='API.BAD_REQUEST', |
||
100 | description='API.INVALID_TENANT_ID') |
||
101 | |||
102 | if tenant_uuid is not None: |
||
103 | regex = re.compile(r'^[a-f0-9]{8}-?[a-f0-9]{4}-?4[a-f0-9]{3}-?[89ab][a-f0-9]{3}-?[a-f0-9]{12}\Z', re.I) |
||
104 | match = regex.match(str.strip(tenant_uuid)) |
||
105 | if not bool(match): |
||
106 | raise falcon.HTTPError(status=falcon.HTTP_400, |
||
107 | title='API.BAD_REQUEST', |
||
108 | description='API.INVALID_TENANT_UUID') |
||
109 | |||
110 | if period_type is None: |
||
111 | raise falcon.HTTPError(status=falcon.HTTP_400, title='API.BAD_REQUEST', |
||
112 | description='API.INVALID_PERIOD_TYPE') |
||
113 | else: |
||
114 | period_type = str.strip(period_type) |
||
115 | if period_type not in ['hourly', 'daily', 'weekly', 'monthly', 'yearly']: |
||
116 | raise falcon.HTTPError(status=falcon.HTTP_400, title='API.BAD_REQUEST', |
||
117 | description='API.INVALID_PERIOD_TYPE') |
||
118 | |||
119 | timezone_offset = int(config.utc_offset[1:3]) * 60 + int(config.utc_offset[4:6]) |
||
120 | if config.utc_offset[0] == '-': |
||
121 | timezone_offset = -timezone_offset |
||
122 | |||
123 | base_start_datetime_utc = None |
||
124 | if base_period_start_datetime_local is not None and len(str.strip(base_period_start_datetime_local)) > 0: |
||
125 | base_period_start_datetime_local = str.strip(base_period_start_datetime_local) |
||
126 | try: |
||
127 | base_start_datetime_utc = datetime.strptime(base_period_start_datetime_local, '%Y-%m-%dT%H:%M:%S') |
||
128 | except ValueError: |
||
129 | raise falcon.HTTPError(status=falcon.HTTP_400, title='API.BAD_REQUEST', |
||
130 | description="API.INVALID_BASE_PERIOD_START_DATETIME") |
||
131 | base_start_datetime_utc = \ |
||
132 | base_start_datetime_utc.replace(tzinfo=timezone.utc) - timedelta(minutes=timezone_offset) |
||
133 | # nomalize the start datetime |
||
134 | if config.minutes_to_count == 30 and base_start_datetime_utc.minute >= 30: |
||
135 | base_start_datetime_utc = base_start_datetime_utc.replace(minute=30, second=0, microsecond=0) |
||
136 | else: |
||
137 | base_start_datetime_utc = base_start_datetime_utc.replace(minute=0, second=0, microsecond=0) |
||
138 | |||
139 | base_end_datetime_utc = None |
||
140 | if base_period_end_datetime_local is not None and len(str.strip(base_period_end_datetime_local)) > 0: |
||
141 | base_period_end_datetime_local = str.strip(base_period_end_datetime_local) |
||
142 | try: |
||
143 | base_end_datetime_utc = datetime.strptime(base_period_end_datetime_local, '%Y-%m-%dT%H:%M:%S') |
||
144 | except ValueError: |
||
145 | raise falcon.HTTPError(status=falcon.HTTP_400, title='API.BAD_REQUEST', |
||
146 | description="API.INVALID_BASE_PERIOD_END_DATETIME") |
||
147 | base_end_datetime_utc = \ |
||
148 | base_end_datetime_utc.replace(tzinfo=timezone.utc) - timedelta(minutes=timezone_offset) |
||
149 | |||
150 | if base_start_datetime_utc is not None and base_end_datetime_utc is not None and \ |
||
151 | base_start_datetime_utc >= base_end_datetime_utc: |
||
152 | raise falcon.HTTPError(status=falcon.HTTP_400, title='API.BAD_REQUEST', |
||
153 | description='API.INVALID_BASE_PERIOD_END_DATETIME') |
||
154 | |||
155 | if reporting_period_start_datetime_local is None: |
||
156 | raise falcon.HTTPError(status=falcon.HTTP_400, title='API.BAD_REQUEST', |
||
157 | description="API.INVALID_REPORTING_PERIOD_START_DATETIME") |
||
158 | else: |
||
159 | reporting_period_start_datetime_local = str.strip(reporting_period_start_datetime_local) |
||
160 | try: |
||
161 | reporting_start_datetime_utc = datetime.strptime(reporting_period_start_datetime_local, |
||
162 | '%Y-%m-%dT%H:%M:%S') |
||
163 | except ValueError: |
||
164 | raise falcon.HTTPError(status=falcon.HTTP_400, title='API.BAD_REQUEST', |
||
165 | description="API.INVALID_REPORTING_PERIOD_START_DATETIME") |
||
166 | reporting_start_datetime_utc = \ |
||
167 | reporting_start_datetime_utc.replace(tzinfo=timezone.utc) - timedelta(minutes=timezone_offset) |
||
168 | # nomalize the start datetime |
||
169 | if config.minutes_to_count == 30 and reporting_start_datetime_utc.minute >= 30: |
||
170 | reporting_start_datetime_utc = reporting_start_datetime_utc.replace(minute=30, second=0, microsecond=0) |
||
171 | else: |
||
172 | reporting_start_datetime_utc = reporting_start_datetime_utc.replace(minute=0, second=0, microsecond=0) |
||
173 | |||
174 | if reporting_period_end_datetime_local is None: |
||
175 | raise falcon.HTTPError(status=falcon.HTTP_400, title='API.BAD_REQUEST', |
||
176 | description="API.INVALID_REPORTING_PERIOD_END_DATETIME") |
||
177 | else: |
||
178 | reporting_period_end_datetime_local = str.strip(reporting_period_end_datetime_local) |
||
179 | try: |
||
180 | reporting_end_datetime_utc = datetime.strptime(reporting_period_end_datetime_local, |
||
181 | '%Y-%m-%dT%H:%M:%S').replace(tzinfo=timezone.utc) - \ |
||
182 | timedelta(minutes=timezone_offset) |
||
183 | except ValueError: |
||
184 | raise falcon.HTTPError(status=falcon.HTTP_400, title='API.BAD_REQUEST', |
||
185 | description="API.INVALID_REPORTING_PERIOD_END_DATETIME") |
||
186 | |||
187 | if reporting_start_datetime_utc >= reporting_end_datetime_utc: |
||
188 | raise falcon.HTTPError(status=falcon.HTTP_400, title='API.BAD_REQUEST', |
||
189 | description='API.INVALID_REPORTING_PERIOD_END_DATETIME') |
||
190 | |||
191 | # if turn quick mode on, do not return parameters data and excel file |
||
192 | is_quick_mode = False |
||
193 | if quick_mode is not None and \ |
||
194 | len(str.strip(quick_mode)) > 0 and \ |
||
195 | str.lower(str.strip(quick_mode)) in ('true', 't', 'on', 'yes', 'y'): |
||
196 | is_quick_mode = True |
||
197 | |||
198 | trans = utilities.get_translation(language) |
||
199 | trans.install() |
||
200 | _ = trans.gettext |
||
201 | |||
202 | ################################################################################################################ |
||
203 | # Step 2: query the tenant |
||
204 | ################################################################################################################ |
||
205 | cnx_system = mysql.connector.connect(**config.myems_system_db) |
||
206 | cursor_system = cnx_system.cursor() |
||
207 | |||
208 | cnx_energy = mysql.connector.connect(**config.myems_energy_db) |
||
209 | cursor_energy = cnx_energy.cursor() |
||
210 | |||
211 | cnx_historical = mysql.connector.connect(**config.myems_historical_db) |
||
212 | cursor_historical = cnx_historical.cursor() |
||
213 | |||
214 | if tenant_id is not None: |
||
215 | cursor_system.execute(" SELECT id, name, area, cost_center_id " |
||
216 | " FROM tbl_tenants " |
||
217 | " WHERE id = %s ", (tenant_id,)) |
||
218 | row_tenant = cursor_system.fetchone() |
||
219 | elif tenant_uuid is not None: |
||
220 | cursor_system.execute(" SELECT id, name, area, cost_center_id " |
||
221 | " FROM tbl_tenants " |
||
222 | " WHERE uuid = %s ", (tenant_uuid,)) |
||
223 | row_tenant = cursor_system.fetchone() |
||
224 | |||
225 | if row_tenant is None: |
||
226 | if cursor_system: |
||
227 | cursor_system.close() |
||
228 | if cnx_system: |
||
229 | cnx_system.close() |
||
230 | |||
231 | if cursor_energy: |
||
232 | cursor_energy.close() |
||
233 | if cnx_energy: |
||
234 | cnx_energy.close() |
||
235 | |||
236 | if cursor_historical: |
||
237 | cursor_historical.close() |
||
238 | if cnx_historical: |
||
239 | cnx_historical.close() |
||
240 | raise falcon.HTTPError(status=falcon.HTTP_404, title='API.NOT_FOUND', description='API.TENANT_NOT_FOUND') |
||
241 | |||
242 | tenant = dict() |
||
243 | tenant['id'] = row_tenant[0] |
||
244 | tenant['name'] = row_tenant[1] |
||
245 | tenant['area'] = row_tenant[2] |
||
246 | tenant['cost_center_id'] = row_tenant[3] |
||
247 | |||
248 | ################################################################################################################ |
||
249 | # Step 3: query energy categories |
||
250 | ################################################################################################################ |
||
251 | energy_category_set = set() |
||
252 | # query energy categories in base period |
||
253 | cursor_energy.execute(" SELECT DISTINCT(energy_category_id) " |
||
254 | " FROM tbl_tenant_input_category_hourly " |
||
255 | " WHERE tenant_id = %s " |
||
256 | " AND start_datetime_utc >= %s " |
||
257 | " AND start_datetime_utc < %s ", |
||
258 | (tenant['id'], base_start_datetime_utc, base_end_datetime_utc)) |
||
259 | rows_energy_categories = cursor_energy.fetchall() |
||
260 | if rows_energy_categories is not None and len(rows_energy_categories) > 0: |
||
261 | for row_energy_category in rows_energy_categories: |
||
262 | energy_category_set.add(row_energy_category[0]) |
||
263 | |||
264 | # query energy categories in reporting period |
||
265 | cursor_energy.execute(" SELECT DISTINCT(energy_category_id) " |
||
266 | " FROM tbl_tenant_input_category_hourly " |
||
267 | " WHERE tenant_id = %s " |
||
268 | " AND start_datetime_utc >= %s " |
||
269 | " AND start_datetime_utc < %s ", |
||
270 | (tenant['id'], reporting_start_datetime_utc, reporting_end_datetime_utc)) |
||
271 | rows_energy_categories = cursor_energy.fetchall() |
||
272 | if rows_energy_categories is not None and len(rows_energy_categories) > 0: |
||
273 | for row_energy_category in rows_energy_categories: |
||
274 | energy_category_set.add(row_energy_category[0]) |
||
275 | |||
276 | # query all energy categories in base period and reporting period |
||
277 | cursor_system.execute(" SELECT id, name, unit_of_measure, kgce, kgco2e " |
||
278 | " FROM tbl_energy_categories " |
||
279 | " ORDER BY id ", ) |
||
280 | rows_energy_categories = cursor_system.fetchall() |
||
281 | if rows_energy_categories is None or len(rows_energy_categories) == 0: |
||
282 | if cursor_system: |
||
283 | cursor_system.close() |
||
284 | if cnx_system: |
||
285 | cnx_system.close() |
||
286 | |||
287 | if cursor_energy: |
||
288 | cursor_energy.close() |
||
289 | if cnx_energy: |
||
290 | cnx_energy.close() |
||
291 | |||
292 | if cursor_historical: |
||
293 | cursor_historical.close() |
||
294 | if cnx_historical: |
||
295 | cnx_historical.close() |
||
296 | raise falcon.HTTPError(status=falcon.HTTP_404, |
||
297 | title='API.NOT_FOUND', |
||
298 | description='API.ENERGY_CATEGORY_NOT_FOUND') |
||
299 | energy_category_dict = dict() |
||
300 | for row_energy_category in rows_energy_categories: |
||
301 | if row_energy_category[0] in energy_category_set: |
||
302 | energy_category_dict[row_energy_category[0]] = {"name": row_energy_category[1], |
||
303 | "unit_of_measure": row_energy_category[2], |
||
304 | "kgce": row_energy_category[3], |
||
305 | "kgco2e": row_energy_category[4]} |
||
306 | |||
307 | ################################################################################################################ |
||
308 | # Step 4: query associated sensors |
||
309 | ################################################################################################################ |
||
310 | point_list = list() |
||
311 | cursor_system.execute(" SELECT p.id, p.name, p.units, p.object_type " |
||
312 | " FROM tbl_tenants t, tbl_sensors s, tbl_tenants_sensors ts, " |
||
313 | " tbl_points p, tbl_sensors_points sp " |
||
314 | " WHERE t.id = %s AND t.id = ts.tenant_id AND ts.sensor_id = s.id " |
||
315 | " AND s.id = sp.sensor_id AND sp.point_id = p.id " |
||
316 | " ORDER BY p.id ", (tenant['id'],)) |
||
317 | rows_points = cursor_system.fetchall() |
||
318 | if rows_points is not None and len(rows_points) > 0: |
||
319 | for row in rows_points: |
||
320 | point_list.append({"id": row[0], "name": row[1], "units": row[2], "object_type": row[3]}) |
||
321 | |||
322 | ################################################################################################################ |
||
323 | # Step 5: query associated points |
||
324 | ################################################################################################################ |
||
325 | cursor_system.execute(" SELECT p.id, p.name, p.units, p.object_type " |
||
326 | " FROM tbl_tenants t, tbl_tenants_points tp, tbl_points p " |
||
327 | " WHERE t.id = %s AND t.id = tp.tenant_id AND tp.point_id = p.id " |
||
328 | " ORDER BY p.id ", (tenant['id'],)) |
||
329 | rows_points = cursor_system.fetchall() |
||
330 | if rows_points is not None and len(rows_points) > 0: |
||
331 | for row in rows_points: |
||
332 | point_list.append({"id": row[0], "name": row[1], "units": row[2], "object_type": row[3]}) |
||
333 | |||
334 | ################################################################################################################ |
||
335 | # Step 6: query base period energy input |
||
336 | ################################################################################################################ |
||
337 | base = dict() |
||
338 | if energy_category_set is not None and len(energy_category_set) > 0: |
||
339 | for energy_category_id in energy_category_set: |
||
340 | base[energy_category_id] = dict() |
||
341 | base[energy_category_id]['timestamps'] = list() |
||
342 | base[energy_category_id]['sub_averages'] = list() |
||
343 | base[energy_category_id]['sub_maximums'] = list() |
||
344 | base[energy_category_id]['average'] = None |
||
345 | base[energy_category_id]['maximum'] = None |
||
346 | base[energy_category_id]['factor'] = None |
||
347 | |||
348 | cursor_energy.execute(" SELECT start_datetime_utc, actual_value " |
||
349 | " FROM tbl_tenant_input_category_hourly " |
||
350 | " WHERE tenant_id = %s " |
||
351 | " AND energy_category_id = %s " |
||
352 | " AND start_datetime_utc >= %s " |
||
353 | " AND start_datetime_utc < %s " |
||
354 | " ORDER BY start_datetime_utc ", |
||
355 | (tenant['id'], |
||
356 | energy_category_id, |
||
357 | base_start_datetime_utc, |
||
358 | base_end_datetime_utc)) |
||
359 | rows_tenant_hourly = cursor_energy.fetchall() |
||
360 | |||
361 | rows_tenant_periodically, \ |
||
362 | base[energy_category_id]['average'], \ |
||
363 | base[energy_category_id]['maximum'] = \ |
||
364 | utilities.averaging_hourly_data_by_period(rows_tenant_hourly, |
||
365 | base_start_datetime_utc, |
||
366 | base_end_datetime_utc, |
||
367 | period_type) |
||
368 | base[energy_category_id]['factor'] = \ |
||
369 | (base[energy_category_id]['average'] / base[energy_category_id]['maximum'] |
||
370 | if (base[energy_category_id]['average'] is not None and |
||
371 | base[energy_category_id]['maximum'] is not None and |
||
372 | base[energy_category_id]['maximum'] > Decimal(0.0)) |
||
373 | else None) |
||
374 | |||
375 | for row_tenant_periodically in rows_tenant_periodically: |
||
376 | current_datetime_local = row_tenant_periodically[0].replace(tzinfo=timezone.utc) + \ |
||
377 | timedelta(minutes=timezone_offset) |
||
378 | if period_type == 'hourly': |
||
379 | current_datetime = current_datetime_local.isoformat()[0:19] |
||
380 | elif period_type == 'daily': |
||
381 | current_datetime = current_datetime_local.isoformat()[0:10] |
||
382 | elif period_type == 'weekly': |
||
383 | current_datetime = current_datetime_local.isoformat()[0:10] |
||
384 | elif period_type == 'monthly': |
||
385 | current_datetime = current_datetime_local.isoformat()[0:7] |
||
386 | elif period_type == 'yearly': |
||
387 | current_datetime = current_datetime_local.isoformat()[0:4] |
||
388 | |||
389 | base[energy_category_id]['timestamps'].append(current_datetime) |
||
390 | base[energy_category_id]['sub_averages'].append(row_tenant_periodically[1]) |
||
391 | base[energy_category_id]['sub_maximums'].append(row_tenant_periodically[2]) |
||
392 | |||
393 | ################################################################################################################ |
||
394 | # Step 7: query reporting period energy input |
||
395 | ################################################################################################################ |
||
396 | reporting = dict() |
||
397 | if energy_category_set is not None and len(energy_category_set) > 0: |
||
398 | for energy_category_id in energy_category_set: |
||
399 | reporting[energy_category_id] = dict() |
||
400 | reporting[energy_category_id]['timestamps'] = list() |
||
401 | reporting[energy_category_id]['sub_averages'] = list() |
||
402 | reporting[energy_category_id]['sub_maximums'] = list() |
||
403 | reporting[energy_category_id]['average'] = None |
||
404 | reporting[energy_category_id]['maximum'] = None |
||
405 | reporting[energy_category_id]['factor'] = None |
||
406 | |||
407 | cursor_energy.execute(" SELECT start_datetime_utc, actual_value " |
||
408 | " FROM tbl_tenant_input_category_hourly " |
||
409 | " WHERE tenant_id = %s " |
||
410 | " AND energy_category_id = %s " |
||
411 | " AND start_datetime_utc >= %s " |
||
412 | " AND start_datetime_utc < %s " |
||
413 | " ORDER BY start_datetime_utc ", |
||
414 | (tenant['id'], |
||
415 | energy_category_id, |
||
416 | reporting_start_datetime_utc, |
||
417 | reporting_end_datetime_utc)) |
||
418 | rows_tenant_hourly = cursor_energy.fetchall() |
||
419 | |||
420 | rows_tenant_periodically, \ |
||
421 | reporting[energy_category_id]['average'], \ |
||
422 | reporting[energy_category_id]['maximum'] = \ |
||
423 | utilities.averaging_hourly_data_by_period(rows_tenant_hourly, |
||
424 | reporting_start_datetime_utc, |
||
425 | reporting_end_datetime_utc, |
||
426 | period_type) |
||
427 | reporting[energy_category_id]['factor'] = \ |
||
428 | (reporting[energy_category_id]['average'] / reporting[energy_category_id]['maximum'] |
||
429 | if (reporting[energy_category_id]['average'] is not None and |
||
430 | reporting[energy_category_id]['maximum'] is not None and |
||
431 | reporting[energy_category_id]['maximum'] > Decimal(0.0)) |
||
432 | else None) |
||
433 | |||
434 | for row_tenant_periodically in rows_tenant_periodically: |
||
435 | current_datetime_local = row_tenant_periodically[0].replace(tzinfo=timezone.utc) + \ |
||
436 | timedelta(minutes=timezone_offset) |
||
437 | if period_type == 'hourly': |
||
438 | current_datetime = current_datetime_local.isoformat()[0:19] |
||
439 | elif period_type == 'daily': |
||
440 | current_datetime = current_datetime_local.isoformat()[0:10] |
||
441 | elif period_type == 'weekly': |
||
442 | current_datetime = current_datetime_local.isoformat()[0:10] |
||
443 | elif period_type == 'monthly': |
||
444 | current_datetime = current_datetime_local.isoformat()[0:7] |
||
445 | elif period_type == 'yearly': |
||
446 | current_datetime = current_datetime_local.isoformat()[0:4] |
||
447 | |||
448 | reporting[energy_category_id]['timestamps'].append(current_datetime) |
||
449 | reporting[energy_category_id]['sub_averages'].append(row_tenant_periodically[1]) |
||
450 | reporting[energy_category_id]['sub_maximums'].append(row_tenant_periodically[2]) |
||
451 | |||
452 | ################################################################################################################ |
||
453 | # Step 8: query tariff data |
||
454 | ################################################################################################################ |
||
455 | parameters_data = dict() |
||
456 | parameters_data['names'] = list() |
||
457 | parameters_data['timestamps'] = list() |
||
458 | parameters_data['values'] = list() |
||
459 | if config.is_tariff_appended and energy_category_set is not None and len(energy_category_set) > 0 \ |
||
460 | and not is_quick_mode: |
||
461 | for energy_category_id in energy_category_set: |
||
462 | energy_category_tariff_dict = utilities.get_energy_category_tariffs(tenant['cost_center_id'], |
||
463 | energy_category_id, |
||
464 | reporting_start_datetime_utc, |
||
465 | reporting_end_datetime_utc) |
||
466 | tariff_timestamp_list = list() |
||
467 | tariff_value_list = list() |
||
468 | for k, v in energy_category_tariff_dict.items(): |
||
469 | # convert k from utc to local |
||
470 | k = k + timedelta(minutes=timezone_offset) |
||
471 | tariff_timestamp_list.append(k.isoformat()[0:19]) |
||
472 | tariff_value_list.append(v) |
||
473 | |||
474 | parameters_data['names'].append(_('Tariff') + '-' + energy_category_dict[energy_category_id]['name']) |
||
475 | parameters_data['timestamps'].append(tariff_timestamp_list) |
||
476 | parameters_data['values'].append(tariff_value_list) |
||
477 | |||
478 | ################################################################################################################ |
||
479 | # Step 9: query associated sensors and points data |
||
480 | ################################################################################################################ |
||
481 | if not is_quick_mode: |
||
482 | for point in point_list: |
||
483 | point_values = [] |
||
484 | point_timestamps = [] |
||
485 | if point['object_type'] == 'ENERGY_VALUE': |
||
486 | query = (" SELECT utc_date_time, actual_value " |
||
487 | " FROM tbl_energy_value " |
||
488 | " WHERE point_id = %s " |
||
489 | " AND utc_date_time BETWEEN %s AND %s " |
||
490 | " ORDER BY utc_date_time ") |
||
491 | cursor_historical.execute(query, (point['id'], |
||
492 | reporting_start_datetime_utc, |
||
493 | reporting_end_datetime_utc)) |
||
494 | rows = cursor_historical.fetchall() |
||
495 | |||
496 | if rows is not None and len(rows) > 0: |
||
497 | for row in rows: |
||
498 | current_datetime_local = row[0].replace(tzinfo=timezone.utc) + \ |
||
499 | timedelta(minutes=timezone_offset) |
||
500 | current_datetime = current_datetime_local.isoformat()[0:19] |
||
501 | point_timestamps.append(current_datetime) |
||
502 | point_values.append(row[1]) |
||
503 | elif point['object_type'] == 'ANALOG_VALUE': |
||
504 | query = (" SELECT utc_date_time, actual_value " |
||
505 | " FROM tbl_analog_value " |
||
506 | " WHERE point_id = %s " |
||
507 | " AND utc_date_time BETWEEN %s AND %s " |
||
508 | " ORDER BY utc_date_time ") |
||
509 | cursor_historical.execute(query, (point['id'], |
||
510 | reporting_start_datetime_utc, |
||
511 | reporting_end_datetime_utc)) |
||
512 | rows = cursor_historical.fetchall() |
||
513 | |||
514 | if rows is not None and len(rows) > 0: |
||
515 | for row in rows: |
||
516 | current_datetime_local = row[0].replace(tzinfo=timezone.utc) + \ |
||
517 | timedelta(minutes=timezone_offset) |
||
518 | current_datetime = current_datetime_local.isoformat()[0:19] |
||
519 | point_timestamps.append(current_datetime) |
||
520 | point_values.append(row[1]) |
||
521 | elif point['object_type'] == 'DIGITAL_VALUE': |
||
522 | query = (" SELECT utc_date_time, actual_value " |
||
523 | " FROM tbl_digital_value " |
||
524 | " WHERE point_id = %s " |
||
525 | " AND utc_date_time BETWEEN %s AND %s " |
||
526 | " ORDER BY utc_date_time ") |
||
527 | cursor_historical.execute(query, (point['id'], |
||
528 | reporting_start_datetime_utc, |
||
529 | reporting_end_datetime_utc)) |
||
530 | rows = cursor_historical.fetchall() |
||
531 | |||
532 | if rows is not None and len(rows) > 0: |
||
533 | for row in rows: |
||
534 | current_datetime_local = row[0].replace(tzinfo=timezone.utc) + \ |
||
535 | timedelta(minutes=timezone_offset) |
||
536 | current_datetime = current_datetime_local.isoformat()[0:19] |
||
537 | point_timestamps.append(current_datetime) |
||
538 | point_values.append(row[1]) |
||
539 | |||
540 | parameters_data['names'].append(point['name'] + ' (' + point['units'] + ')') |
||
541 | parameters_data['timestamps'].append(point_timestamps) |
||
542 | parameters_data['values'].append(point_values) |
||
543 | |||
544 | ################################################################################################################ |
||
545 | # Step 10: construct the report |
||
546 | ################################################################################################################ |
||
547 | if cursor_system: |
||
548 | cursor_system.close() |
||
549 | if cnx_system: |
||
550 | cnx_system.close() |
||
551 | |||
552 | if cursor_energy: |
||
553 | cursor_energy.close() |
||
554 | if cnx_energy: |
||
555 | cnx_energy.close() |
||
556 | |||
557 | if cursor_historical: |
||
558 | cursor_historical.close() |
||
559 | if cnx_historical: |
||
560 | cnx_historical.close() |
||
561 | |||
562 | result = dict() |
||
563 | |||
564 | result['tenant'] = dict() |
||
565 | result['tenant']['name'] = tenant['name'] |
||
566 | result['tenant']['area'] = tenant['area'] |
||
567 | |||
568 | result['base_period'] = dict() |
||
569 | result['base_period']['names'] = list() |
||
570 | result['base_period']['units'] = list() |
||
571 | result['base_period']['timestamps'] = list() |
||
572 | result['base_period']['sub_averages'] = list() |
||
573 | result['base_period']['sub_maximums'] = list() |
||
574 | result['base_period']['averages'] = list() |
||
575 | result['base_period']['maximums'] = list() |
||
576 | result['base_period']['factors'] = list() |
||
577 | if energy_category_set is not None and len(energy_category_set) > 0: |
||
578 | for energy_category_id in energy_category_set: |
||
579 | result['base_period']['names'].append(energy_category_dict[energy_category_id]['name']) |
||
580 | result['base_period']['units'].append(energy_category_dict[energy_category_id]['unit_of_measure']) |
||
581 | result['base_period']['timestamps'].append(base[energy_category_id]['timestamps']) |
||
582 | result['base_period']['sub_averages'].append(base[energy_category_id]['sub_averages']) |
||
583 | result['base_period']['sub_maximums'].append(base[energy_category_id]['sub_maximums']) |
||
584 | result['base_period']['averages'].append(base[energy_category_id]['average']) |
||
585 | result['base_period']['maximums'].append(base[energy_category_id]['maximum']) |
||
586 | result['base_period']['factors'].append(base[energy_category_id]['factor']) |
||
587 | |||
588 | result['reporting_period'] = dict() |
||
589 | result['reporting_period']['names'] = list() |
||
590 | result['reporting_period']['energy_category_ids'] = list() |
||
591 | result['reporting_period']['units'] = list() |
||
592 | result['reporting_period']['timestamps'] = list() |
||
593 | result['reporting_period']['sub_averages'] = list() |
||
594 | result['reporting_period']['sub_maximums'] = list() |
||
595 | result['reporting_period']['rates_of_sub_maximums'] = list() |
||
596 | result['reporting_period']['averages'] = list() |
||
597 | result['reporting_period']['averages_per_unit_area'] = list() |
||
598 | result['reporting_period']['averages_increment_rate'] = list() |
||
599 | result['reporting_period']['maximums'] = list() |
||
600 | result['reporting_period']['maximums_per_unit_area'] = list() |
||
601 | result['reporting_period']['maximums_increment_rate'] = list() |
||
602 | result['reporting_period']['factors'] = list() |
||
603 | result['reporting_period']['factors_increment_rate'] = list() |
||
604 | |||
605 | if energy_category_set is not None and len(energy_category_set) > 0: |
||
606 | for energy_category_id in energy_category_set: |
||
607 | result['reporting_period']['names'].append(energy_category_dict[energy_category_id]['name']) |
||
608 | result['reporting_period']['energy_category_ids'].append(energy_category_id) |
||
609 | result['reporting_period']['units'].append(energy_category_dict[energy_category_id]['unit_of_measure']) |
||
610 | result['reporting_period']['timestamps'].append(reporting[energy_category_id]['timestamps']) |
||
611 | result['reporting_period']['sub_averages'].append(reporting[energy_category_id]['sub_averages']) |
||
612 | result['reporting_period']['sub_maximums'].append(reporting[energy_category_id]['sub_maximums']) |
||
613 | result['reporting_period']['averages'].append(reporting[energy_category_id]['average']) |
||
614 | result['reporting_period']['averages_per_unit_area'].append( |
||
615 | reporting[energy_category_id]['average'] / tenant['area'] |
||
616 | if reporting[energy_category_id]['average'] is not None and |
||
617 | tenant['area'] is not None and |
||
618 | tenant['area'] > Decimal(0.0) |
||
619 | else None) |
||
620 | result['reporting_period']['averages_increment_rate'].append( |
||
621 | (reporting[energy_category_id]['average'] - base[energy_category_id]['average']) / |
||
622 | base[energy_category_id]['average'] if (reporting[energy_category_id]['average'] is not None and |
||
623 | base[energy_category_id]['average'] is not None and |
||
624 | base[energy_category_id]['average'] > Decimal(0.0)) |
||
625 | else None) |
||
626 | result['reporting_period']['maximums'].append(reporting[energy_category_id]['maximum']) |
||
627 | result['reporting_period']['maximums_increment_rate'].append( |
||
628 | (reporting[energy_category_id]['maximum'] - base[energy_category_id]['maximum']) / |
||
629 | base[energy_category_id]['maximum'] if (reporting[energy_category_id]['maximum'] is not None and |
||
630 | base[energy_category_id]['maximum'] is not None and |
||
631 | base[energy_category_id]['maximum'] > Decimal(0.0)) |
||
632 | else None) |
||
633 | result['reporting_period']['maximums_per_unit_area'].append( |
||
634 | reporting[energy_category_id]['maximum'] / tenant['area'] |
||
635 | if reporting[energy_category_id]['maximum'] is not None and |
||
636 | tenant['area'] is not None and |
||
637 | tenant['area'] > Decimal(0.0) |
||
638 | else None) |
||
639 | result['reporting_period']['factors'].append(reporting[energy_category_id]['factor']) |
||
640 | result['reporting_period']['factors_increment_rate'].append( |
||
641 | (reporting[energy_category_id]['factor'] - base[energy_category_id]['factor']) / |
||
642 | base[energy_category_id]['factor'] if (reporting[energy_category_id]['factor'] is not None and |
||
643 | base[energy_category_id]['factor'] is not None and |
||
644 | base[energy_category_id]['factor'] > Decimal(0.0)) |
||
645 | else None) |
||
646 | |||
647 | rate = list() |
||
648 | for index, value in enumerate(reporting[energy_category_id]['sub_maximums']): |
||
649 | if index < len(base[energy_category_id]['sub_maximums']) \ |
||
650 | and base[energy_category_id]['sub_maximums'][index] != 0 and value != 0\ |
||
651 | and base[energy_category_id]['sub_maximums'][index] is not None and value is not None: |
||
652 | rate.append((value - base[energy_category_id]['sub_maximums'][index]) |
||
653 | / base[energy_category_id]['sub_maximums'][index]) |
||
654 | else: |
||
655 | rate.append(None) |
||
656 | result['reporting_period']['rates_of_sub_maximums'].append(rate) |
||
657 | |||
658 | result['parameters'] = { |
||
659 | "names": parameters_data['names'], |
||
660 | "timestamps": parameters_data['timestamps'], |
||
661 | "values": parameters_data['values'] |
||
662 | } |
||
663 | |||
664 | # export result to Excel file and then encode the file to base64 string |
||
665 | if not is_quick_mode: |
||
666 | result['excel_bytes_base64'] = excelexporters.tenantload.export(result, |
||
667 | tenant['name'], |
||
668 | base_period_start_datetime_local, |
||
669 | base_period_end_datetime_local, |
||
670 | reporting_period_start_datetime_local, |
||
671 | reporting_period_end_datetime_local, |
||
672 | period_type, |
||
673 | language) |
||
674 | |||
675 | resp.text = json.dumps(result) |
||
676 |