|
1
|
|
|
import re |
|
2
|
|
|
from datetime import datetime, timedelta, timezone |
|
3
|
|
|
from decimal import Decimal |
|
4
|
|
|
import falcon |
|
5
|
|
|
import mysql.connector |
|
6
|
|
|
import simplejson as json |
|
7
|
|
|
import config |
|
8
|
|
|
import excelexporters.shopfloorcomparison |
|
9
|
|
|
from core import utilities |
|
10
|
|
|
from core.useractivity import access_control, api_key_control |
|
11
|
|
|
|
|
12
|
|
|
|
|
13
|
|
View Code Duplication |
class Reporting: |
|
|
|
|
|
|
14
|
|
|
def __init__(self): |
|
15
|
|
|
""" "Initializes Reporting""" |
|
16
|
|
|
pass |
|
17
|
|
|
|
|
18
|
|
|
@staticmethod |
|
19
|
|
|
def on_options(req, resp): |
|
20
|
|
|
_ = req |
|
21
|
|
|
resp.status = falcon.HTTP_200 |
|
22
|
|
|
|
|
23
|
|
|
#################################################################################################################### |
|
24
|
|
|
# PROCEDURES |
|
25
|
|
|
# Step 1: valid parameters |
|
26
|
|
|
# Step 2: query the shopfloor and energy category |
|
27
|
|
|
# Step 3: query shopfloor input category hourly data (pre-aggregated by background service) |
|
28
|
|
|
# Step 4: aggregate shopfloor energy consumption data by period |
|
29
|
|
|
# Step 5: construct the report |
|
30
|
|
|
#################################################################################################################### |
|
31
|
|
|
@staticmethod |
|
32
|
|
|
def on_get(req, resp): |
|
33
|
|
|
if ( |
|
34
|
|
|
"API-KEY" not in req.headers |
|
35
|
|
|
or not isinstance(req.headers["API-KEY"], str) |
|
36
|
|
|
or len(str.strip(req.headers["API-KEY"])) == 0 |
|
37
|
|
|
): |
|
38
|
|
|
access_control(req) |
|
39
|
|
|
else: |
|
40
|
|
|
api_key_control(req) |
|
41
|
|
|
print(req.params) |
|
42
|
|
|
# this procedure accepts shopfloor id or shopfloor uuid to identify a shopfloor |
|
43
|
|
|
shopfloor_id1 = req.params.get("shopfloorid1") |
|
44
|
|
|
shopfloor_uuid1 = req.params.get("shopflooruuid1") |
|
45
|
|
|
shopfloor_id2 = req.params.get("shopfloorid2") |
|
46
|
|
|
shopfloor_uuid2 = req.params.get("shopflooruuid2") |
|
47
|
|
|
energy_category_id = req.params.get("energycategoryid") |
|
48
|
|
|
period_type = req.params.get("periodtype") |
|
49
|
|
|
reporting_period_start_datetime_local = req.params.get( |
|
50
|
|
|
"reportingperiodstartdatetime" |
|
51
|
|
|
) |
|
52
|
|
|
reporting_period_end_datetime_local = req.params.get( |
|
53
|
|
|
"reportingperiodenddatetime" |
|
54
|
|
|
) |
|
55
|
|
|
language = req.params.get("language") |
|
56
|
|
|
quick_mode = req.params.get("quickmode") |
|
57
|
|
|
|
|
58
|
|
|
################################################################################################################ |
|
59
|
|
|
# Step 1: valid parameters |
|
60
|
|
|
################################################################################################################ |
|
61
|
|
|
if shopfloor_id1 is None and shopfloor_uuid1 is None: |
|
62
|
|
|
raise falcon.HTTPError( |
|
63
|
|
|
status=falcon.HTTP_400, |
|
64
|
|
|
title="API.BAD_REQUEST", |
|
65
|
|
|
description="API.INVALID_EQUIPMENT_ID", |
|
66
|
|
|
) |
|
67
|
|
|
|
|
68
|
|
|
if shopfloor_id1 is not None: |
|
69
|
|
|
shopfloor_id1 = str.strip(shopfloor_id1) |
|
70
|
|
|
if not shopfloor_id1.isdigit() or int(shopfloor_id1) <= 0: |
|
71
|
|
|
raise falcon.HTTPError( |
|
72
|
|
|
status=falcon.HTTP_400, |
|
73
|
|
|
title="API.BAD_REQUEST", |
|
74
|
|
|
description="API.INVALID_EQUIPMENT_ID", |
|
75
|
|
|
) |
|
76
|
|
|
|
|
77
|
|
|
if shopfloor_uuid1 is not None: |
|
78
|
|
|
regex = re.compile( |
|
79
|
|
|
r"^[a-f0-9]{8}-?[a-f0-9]{4}-?4[a-f0-9]{3}-?[89ab][a-f0-9]{3}-?[a-f0-9]{12}\Z", |
|
80
|
|
|
re.I, |
|
81
|
|
|
) |
|
82
|
|
|
match = regex.match(str.strip(shopfloor_uuid1)) |
|
83
|
|
|
if not bool(match): |
|
84
|
|
|
raise falcon.HTTPError( |
|
85
|
|
|
status=falcon.HTTP_400, |
|
86
|
|
|
title="API.BAD_REQUEST", |
|
87
|
|
|
description="API.INVALID_EQUIPMENT_UUID", |
|
88
|
|
|
) |
|
89
|
|
|
|
|
90
|
|
|
if shopfloor_id2 is None and shopfloor_uuid2 is None: |
|
91
|
|
|
raise falcon.HTTPError( |
|
92
|
|
|
status=falcon.HTTP_400, |
|
93
|
|
|
title="API.BAD_REQUEST", |
|
94
|
|
|
description="API.INVALID_EQUIPMENT_ID", |
|
95
|
|
|
) |
|
96
|
|
|
|
|
97
|
|
|
if shopfloor_id2 is not None: |
|
98
|
|
|
shopfloor_id2 = str.strip(shopfloor_id2) |
|
99
|
|
|
if not shopfloor_id2.isdigit() or int(shopfloor_id2) <= 0: |
|
100
|
|
|
raise falcon.HTTPError( |
|
101
|
|
|
status=falcon.HTTP_400, |
|
102
|
|
|
title="API.BAD_REQUEST", |
|
103
|
|
|
description="API.INVALID_EQUIPMENT_ID", |
|
104
|
|
|
) |
|
105
|
|
|
|
|
106
|
|
|
if shopfloor_uuid2 is not None: |
|
107
|
|
|
regex = re.compile( |
|
108
|
|
|
r"^[a-f0-9]{8}-?[a-f0-9]{4}-?4[a-f0-9]{3}-?[89ab][a-f0-9]{3}-?[a-f0-9]{12}\Z", |
|
109
|
|
|
re.I, |
|
110
|
|
|
) |
|
111
|
|
|
match = regex.match(str.strip(shopfloor_uuid2)) |
|
112
|
|
|
if not bool(match): |
|
113
|
|
|
raise falcon.HTTPError( |
|
114
|
|
|
status=falcon.HTTP_400, |
|
115
|
|
|
title="API.BAD_REQUEST", |
|
116
|
|
|
description="API.INVALID_EQUIPMENT_UUID", |
|
117
|
|
|
) |
|
118
|
|
|
|
|
119
|
|
|
if energy_category_id is None: |
|
120
|
|
|
raise falcon.HTTPError( |
|
121
|
|
|
status=falcon.HTTP_400, |
|
122
|
|
|
title="API.BAD_REQUEST", |
|
123
|
|
|
description="API.INVALID_ENERGY_CATEGORY_ID", |
|
124
|
|
|
) |
|
125
|
|
|
else: |
|
126
|
|
|
energy_category_id = str.strip(energy_category_id) |
|
127
|
|
|
if not energy_category_id.isdigit() or int(energy_category_id) <= 0: |
|
128
|
|
|
raise falcon.HTTPError( |
|
129
|
|
|
status=falcon.HTTP_400, |
|
130
|
|
|
title="API.BAD_REQUEST", |
|
131
|
|
|
description="API.INVALID_ENERGY_CATEGORY_ID", |
|
132
|
|
|
) |
|
133
|
|
|
|
|
134
|
|
|
if period_type is None: |
|
135
|
|
|
raise falcon.HTTPError( |
|
136
|
|
|
status=falcon.HTTP_400, |
|
137
|
|
|
title="API.BAD_REQUEST", |
|
138
|
|
|
description="API.INVALID_PERIOD_TYPE", |
|
139
|
|
|
) |
|
140
|
|
|
else: |
|
141
|
|
|
period_type = str.strip(period_type) |
|
142
|
|
|
if period_type not in ["hourly", "daily", "weekly", "monthly", "yearly"]: |
|
143
|
|
|
raise falcon.HTTPError( |
|
144
|
|
|
status=falcon.HTTP_400, |
|
145
|
|
|
title="API.BAD_REQUEST", |
|
146
|
|
|
description="API.INVALID_PERIOD_TYPE", |
|
147
|
|
|
) |
|
148
|
|
|
|
|
149
|
|
|
timezone_offset = int(config.utc_offset[1:3]) * 60 + int(config.utc_offset[4:6]) |
|
150
|
|
|
if config.utc_offset[0] == "-": |
|
151
|
|
|
timezone_offset = -timezone_offset |
|
152
|
|
|
|
|
153
|
|
|
if reporting_period_start_datetime_local is None: |
|
154
|
|
|
raise falcon.HTTPError( |
|
155
|
|
|
status=falcon.HTTP_400, |
|
156
|
|
|
title="API.BAD_REQUEST", |
|
157
|
|
|
description="API.INVALID_REPORTING_PERIOD_START_DATETIME", |
|
158
|
|
|
) |
|
159
|
|
|
else: |
|
160
|
|
|
reporting_period_start_datetime_local = str.strip( |
|
161
|
|
|
reporting_period_start_datetime_local |
|
162
|
|
|
) |
|
163
|
|
|
try: |
|
164
|
|
|
reporting_start_datetime_utc = datetime.strptime( |
|
165
|
|
|
reporting_period_start_datetime_local, "%Y-%m-%dT%H:%M:%S" |
|
166
|
|
|
) |
|
167
|
|
|
except ValueError: |
|
168
|
|
|
raise falcon.HTTPError( |
|
169
|
|
|
status=falcon.HTTP_400, |
|
170
|
|
|
title="API.BAD_REQUEST", |
|
171
|
|
|
description="API.INVALID_REPORTING_PERIOD_START_DATETIME", |
|
172
|
|
|
) |
|
173
|
|
|
reporting_start_datetime_utc = reporting_start_datetime_utc.replace( |
|
174
|
|
|
tzinfo=timezone.utc |
|
175
|
|
|
) - timedelta(minutes=timezone_offset) |
|
176
|
|
|
# nomalize the start datetime |
|
177
|
|
|
if ( |
|
178
|
|
|
config.minutes_to_count == 30 |
|
179
|
|
|
and reporting_start_datetime_utc.minute >= 30 |
|
180
|
|
|
): |
|
181
|
|
|
reporting_start_datetime_utc = reporting_start_datetime_utc.replace( |
|
182
|
|
|
minute=30, second=0, microsecond=0 |
|
183
|
|
|
) |
|
184
|
|
|
else: |
|
185
|
|
|
reporting_start_datetime_utc = reporting_start_datetime_utc.replace( |
|
186
|
|
|
minute=0, second=0, microsecond=0 |
|
187
|
|
|
) |
|
188
|
|
|
|
|
189
|
|
|
if reporting_period_end_datetime_local is None: |
|
190
|
|
|
raise falcon.HTTPError( |
|
191
|
|
|
status=falcon.HTTP_400, |
|
192
|
|
|
title="API.BAD_REQUEST", |
|
193
|
|
|
description="API.INVALID_REPORTING_PERIOD_END_DATETIME", |
|
194
|
|
|
) |
|
195
|
|
|
else: |
|
196
|
|
|
reporting_period_end_datetime_local = str.strip( |
|
197
|
|
|
reporting_period_end_datetime_local |
|
198
|
|
|
) |
|
199
|
|
|
try: |
|
200
|
|
|
reporting_end_datetime_utc = datetime.strptime( |
|
201
|
|
|
reporting_period_end_datetime_local, "%Y-%m-%dT%H:%M:%S" |
|
202
|
|
|
) |
|
203
|
|
|
except ValueError: |
|
204
|
|
|
raise falcon.HTTPError( |
|
205
|
|
|
status=falcon.HTTP_400, |
|
206
|
|
|
title="API.BAD_REQUEST", |
|
207
|
|
|
description="API.INVALID_REPORTING_PERIOD_END_DATETIME", |
|
208
|
|
|
) |
|
209
|
|
|
reporting_end_datetime_utc = reporting_end_datetime_utc.replace( |
|
210
|
|
|
tzinfo=timezone.utc |
|
211
|
|
|
) - timedelta(minutes=timezone_offset) |
|
212
|
|
|
|
|
213
|
|
|
if reporting_start_datetime_utc >= reporting_end_datetime_utc: |
|
214
|
|
|
raise falcon.HTTPError( |
|
215
|
|
|
status=falcon.HTTP_400, |
|
216
|
|
|
title="API.BAD_REQUEST", |
|
217
|
|
|
description="API.INVALID_REPORTING_PERIOD_END_DATETIME", |
|
218
|
|
|
) |
|
219
|
|
|
|
|
220
|
|
|
# if turn quick mode on, do not return parameters data and excel file |
|
221
|
|
|
is_quick_mode = False |
|
222
|
|
|
if ( |
|
223
|
|
|
quick_mode is not None |
|
224
|
|
|
and len(str.strip(quick_mode)) > 0 |
|
225
|
|
|
and str.lower(str.strip(quick_mode)) in ("true", "t", "on", "yes", "y") |
|
226
|
|
|
): |
|
227
|
|
|
is_quick_mode = True |
|
228
|
|
|
|
|
229
|
|
|
################################################################################################################ |
|
230
|
|
|
# Step 2: query the shopfloor and energy category |
|
231
|
|
|
################################################################################################################ |
|
232
|
|
|
cnx_system = mysql.connector.connect(**config.myems_system_db) |
|
233
|
|
|
cursor_system = cnx_system.cursor() |
|
234
|
|
|
|
|
235
|
|
|
cnx_energy = mysql.connector.connect(**config.myems_energy_db) |
|
236
|
|
|
cursor_energy = cnx_energy.cursor() |
|
237
|
|
|
|
|
238
|
|
|
cnx_historical = mysql.connector.connect(**config.myems_historical_db) |
|
239
|
|
|
cursor_historical = cnx_historical.cursor() |
|
240
|
|
|
|
|
241
|
|
|
# Query shopfloor 1 |
|
242
|
|
|
if shopfloor_id1 is not None: |
|
243
|
|
|
cursor_system.execute( |
|
244
|
|
|
" SELECT id, name FROM tbl_shopfloors WHERE id = %s ", (shopfloor_id1,) |
|
245
|
|
|
) |
|
246
|
|
|
row_shopfloor1 = cursor_system.fetchone() |
|
247
|
|
|
elif shopfloor_uuid1 is not None: |
|
248
|
|
|
cursor_system.execute( |
|
249
|
|
|
" SELECT id, name FROM tbl_shopfloors WHERE uuid = %s ", |
|
250
|
|
|
(shopfloor_uuid1,), |
|
251
|
|
|
) |
|
252
|
|
|
row_shopfloor1 = cursor_system.fetchone() |
|
253
|
|
|
|
|
254
|
|
|
if row_shopfloor1 is None: |
|
|
|
|
|
|
255
|
|
|
if cursor_system: |
|
256
|
|
|
cursor_system.close() |
|
257
|
|
|
if cnx_system: |
|
258
|
|
|
cnx_system.close() |
|
259
|
|
|
|
|
260
|
|
|
if cursor_energy: |
|
261
|
|
|
cursor_energy.close() |
|
262
|
|
|
if cnx_energy: |
|
263
|
|
|
cnx_energy.close() |
|
264
|
|
|
|
|
265
|
|
|
if cursor_historical: |
|
266
|
|
|
cursor_historical.close() |
|
267
|
|
|
if cnx_historical: |
|
268
|
|
|
cnx_historical.close() |
|
269
|
|
|
raise falcon.HTTPError( |
|
270
|
|
|
status=falcon.HTTP_404, |
|
271
|
|
|
title="API.NOT_FOUND", |
|
272
|
|
|
description="API.EQUIPMENT_NOT_FOUND", |
|
273
|
|
|
) |
|
274
|
|
|
|
|
275
|
|
|
shopfloor1 = dict() |
|
276
|
|
|
shopfloor1["id"] = row_shopfloor1[0] |
|
277
|
|
|
shopfloor1["name"] = row_shopfloor1[1] |
|
278
|
|
|
|
|
279
|
|
|
# Query shopfloor 2 |
|
280
|
|
|
if shopfloor_id2 is not None: |
|
281
|
|
|
cursor_system.execute( |
|
282
|
|
|
" SELECT id, name FROM tbl_shopfloors WHERE id = %s ", (shopfloor_id2,) |
|
283
|
|
|
) |
|
284
|
|
|
row_shopfloor2 = cursor_system.fetchone() |
|
285
|
|
|
elif shopfloor_uuid2 is not None: |
|
286
|
|
|
cursor_system.execute( |
|
287
|
|
|
" SELECT id, name FROM tbl_shopfloors WHERE uuid = %s ", |
|
288
|
|
|
(shopfloor_uuid2,), |
|
289
|
|
|
) |
|
290
|
|
|
row_shopfloor2 = cursor_system.fetchone() |
|
291
|
|
|
|
|
292
|
|
|
if row_shopfloor2 is None: |
|
|
|
|
|
|
293
|
|
|
if cursor_system: |
|
294
|
|
|
cursor_system.close() |
|
295
|
|
|
if cnx_system: |
|
296
|
|
|
cnx_system.close() |
|
297
|
|
|
|
|
298
|
|
|
if cursor_energy: |
|
299
|
|
|
cursor_energy.close() |
|
300
|
|
|
if cnx_energy: |
|
301
|
|
|
cnx_energy.close() |
|
302
|
|
|
|
|
303
|
|
|
if cursor_historical: |
|
304
|
|
|
cursor_historical.close() |
|
305
|
|
|
if cnx_historical: |
|
306
|
|
|
cnx_historical.close() |
|
307
|
|
|
raise falcon.HTTPError( |
|
308
|
|
|
status=falcon.HTTP_404, |
|
309
|
|
|
title="API.NOT_FOUND", |
|
310
|
|
|
description="API.EQUIPMENT_NOT_FOUND", |
|
311
|
|
|
) |
|
312
|
|
|
|
|
313
|
|
|
shopfloor2 = dict() |
|
314
|
|
|
shopfloor2["id"] = row_shopfloor2[0] |
|
315
|
|
|
shopfloor2["name"] = row_shopfloor2[1] |
|
316
|
|
|
|
|
317
|
|
|
# Query energy category |
|
318
|
|
|
cursor_system.execute( |
|
319
|
|
|
" SELECT id, name, unit_of_measure FROM tbl_energy_categories WHERE id = %s ", |
|
320
|
|
|
(energy_category_id,), |
|
321
|
|
|
) |
|
322
|
|
|
row_energy_category = cursor_system.fetchone() |
|
323
|
|
|
|
|
324
|
|
|
if row_energy_category is None: |
|
325
|
|
|
if cursor_system: |
|
326
|
|
|
cursor_system.close() |
|
327
|
|
|
if cnx_system: |
|
328
|
|
|
cnx_system.close() |
|
329
|
|
|
|
|
330
|
|
|
if cursor_energy: |
|
331
|
|
|
cursor_energy.close() |
|
332
|
|
|
if cnx_energy: |
|
333
|
|
|
cnx_energy.close() |
|
334
|
|
|
|
|
335
|
|
|
if cursor_historical: |
|
336
|
|
|
cursor_historical.close() |
|
337
|
|
|
if cnx_historical: |
|
338
|
|
|
cnx_historical.close() |
|
339
|
|
|
raise falcon.HTTPError( |
|
340
|
|
|
status=falcon.HTTP_404, |
|
341
|
|
|
title="API.NOT_FOUND", |
|
342
|
|
|
description="API.ENERGY_CATEGORY_NOT_FOUND", |
|
343
|
|
|
) |
|
344
|
|
|
|
|
345
|
|
|
energy_category = dict() |
|
346
|
|
|
energy_category["id"] = row_energy_category[0] |
|
347
|
|
|
energy_category["name"] = row_energy_category[1] |
|
348
|
|
|
energy_category["unit_of_measure"] = row_energy_category[2] |
|
349
|
|
|
|
|
350
|
|
|
################################################################################################################ |
|
351
|
|
|
# Step 3: query shopfloor input category hourly data (pre-aggregated by background service) |
|
352
|
|
|
################################################################################################################ |
|
353
|
|
|
# Query shopfloor 1 input category hourly data |
|
354
|
|
|
cursor_energy.execute( |
|
355
|
|
|
" SELECT start_datetime_utc, actual_value " |
|
356
|
|
|
" FROM tbl_shopfloor_input_category_hourly " |
|
357
|
|
|
" WHERE shopfloor_id = %s " |
|
358
|
|
|
" AND energy_category_id = %s " |
|
359
|
|
|
" AND start_datetime_utc >= %s " |
|
360
|
|
|
" AND start_datetime_utc < %s " |
|
361
|
|
|
" ORDER BY start_datetime_utc ", |
|
362
|
|
|
( |
|
363
|
|
|
shopfloor1["id"], |
|
364
|
|
|
energy_category_id, |
|
365
|
|
|
reporting_start_datetime_utc, |
|
366
|
|
|
reporting_end_datetime_utc, |
|
367
|
|
|
), |
|
368
|
|
|
) |
|
369
|
|
|
rows_shopfloor1_hourly = cursor_energy.fetchall() |
|
370
|
|
|
|
|
371
|
|
|
# Query shopfloor 2 input category hourly data |
|
372
|
|
|
cursor_energy.execute( |
|
373
|
|
|
" SELECT start_datetime_utc, actual_value " |
|
374
|
|
|
" FROM tbl_shopfloor_input_category_hourly " |
|
375
|
|
|
" WHERE shopfloor_id = %s " |
|
376
|
|
|
" AND energy_category_id = %s " |
|
377
|
|
|
" AND start_datetime_utc >= %s " |
|
378
|
|
|
" AND start_datetime_utc < %s " |
|
379
|
|
|
" ORDER BY start_datetime_utc ", |
|
380
|
|
|
( |
|
381
|
|
|
shopfloor2["id"], |
|
382
|
|
|
energy_category_id, |
|
383
|
|
|
reporting_start_datetime_utc, |
|
384
|
|
|
reporting_end_datetime_utc, |
|
385
|
|
|
), |
|
386
|
|
|
) |
|
387
|
|
|
rows_shopfloor2_hourly = cursor_energy.fetchall() |
|
388
|
|
|
|
|
389
|
|
|
################################################################################################################ |
|
390
|
|
|
# Step 4: aggregate shopfloor energy consumption data by period |
|
391
|
|
|
################################################################################################################ |
|
392
|
|
|
# Aggregate energy consumption for shopfloor 1 |
|
393
|
|
|
shopfloor1_energy_data = dict() |
|
394
|
|
|
shopfloor1_energy_data["timestamps"] = list() |
|
395
|
|
|
shopfloor1_energy_data["values"] = list() |
|
396
|
|
|
shopfloor1_energy_data["total_in_category"] = Decimal(0.0) |
|
397
|
|
|
|
|
398
|
|
|
# Aggregate shopfloor 1 hourly data by period |
|
399
|
|
|
rows_shopfloor1_periodically = utilities.aggregate_hourly_data_by_period( |
|
400
|
|
|
rows_shopfloor1_hourly, |
|
401
|
|
|
reporting_start_datetime_utc, |
|
402
|
|
|
reporting_end_datetime_utc, |
|
403
|
|
|
period_type, |
|
404
|
|
|
) |
|
405
|
|
|
|
|
406
|
|
|
for row_shopfloor1_periodically in rows_shopfloor1_periodically: |
|
407
|
|
|
current_datetime_local = row_shopfloor1_periodically[0].replace( |
|
408
|
|
|
tzinfo=timezone.utc |
|
409
|
|
|
) + timedelta(minutes=timezone_offset) |
|
410
|
|
|
if period_type == "hourly": |
|
411
|
|
|
current_datetime = current_datetime_local.isoformat()[0:19] |
|
412
|
|
|
elif period_type == "daily": |
|
413
|
|
|
current_datetime = current_datetime_local.isoformat()[0:10] |
|
414
|
|
|
elif period_type == "weekly": |
|
415
|
|
|
current_datetime = current_datetime_local.isoformat()[0:10] |
|
416
|
|
|
elif period_type == "monthly": |
|
417
|
|
|
current_datetime = current_datetime_local.isoformat()[0:7] |
|
418
|
|
|
elif period_type == "yearly": |
|
419
|
|
|
current_datetime = current_datetime_local.isoformat()[0:4] |
|
420
|
|
|
|
|
421
|
|
|
actual_value = row_shopfloor1_periodically[1] |
|
422
|
|
|
|
|
423
|
|
|
shopfloor1_energy_data["timestamps"].append(current_datetime) |
|
|
|
|
|
|
424
|
|
|
shopfloor1_energy_data["values"].append(actual_value) |
|
425
|
|
|
if actual_value is not None: |
|
426
|
|
|
shopfloor1_energy_data["total_in_category"] += actual_value |
|
427
|
|
|
|
|
428
|
|
|
# Aggregate energy consumption for shopfloor 2 |
|
429
|
|
|
shopfloor2_energy_data = dict() |
|
430
|
|
|
shopfloor2_energy_data["timestamps"] = list() |
|
431
|
|
|
shopfloor2_energy_data["values"] = list() |
|
432
|
|
|
shopfloor2_energy_data["total_in_category"] = Decimal(0.0) |
|
433
|
|
|
|
|
434
|
|
|
# Aggregate shopfloor 2 hourly data by period |
|
435
|
|
|
rows_shopfloor2_periodically = utilities.aggregate_hourly_data_by_period( |
|
436
|
|
|
rows_shopfloor2_hourly, |
|
437
|
|
|
reporting_start_datetime_utc, |
|
438
|
|
|
reporting_end_datetime_utc, |
|
439
|
|
|
period_type, |
|
440
|
|
|
) |
|
441
|
|
|
|
|
442
|
|
|
for row_shopfloor2_periodically in rows_shopfloor2_periodically: |
|
443
|
|
|
current_datetime_local = row_shopfloor2_periodically[0].replace( |
|
444
|
|
|
tzinfo=timezone.utc |
|
445
|
|
|
) + timedelta(minutes=timezone_offset) |
|
446
|
|
|
if period_type == "hourly": |
|
447
|
|
|
current_datetime = current_datetime_local.isoformat()[0:19] |
|
448
|
|
|
elif period_type == "daily": |
|
449
|
|
|
current_datetime = current_datetime_local.isoformat()[0:10] |
|
450
|
|
|
elif period_type == "weekly": |
|
451
|
|
|
current_datetime = current_datetime_local.isoformat()[0:10] |
|
452
|
|
|
elif period_type == "monthly": |
|
453
|
|
|
current_datetime = current_datetime_local.isoformat()[0:7] |
|
454
|
|
|
elif period_type == "yearly": |
|
455
|
|
|
current_datetime = current_datetime_local.isoformat()[0:4] |
|
456
|
|
|
|
|
457
|
|
|
actual_value = row_shopfloor2_periodically[1] |
|
458
|
|
|
|
|
459
|
|
|
shopfloor2_energy_data["timestamps"].append(current_datetime) |
|
460
|
|
|
shopfloor2_energy_data["values"].append(actual_value) |
|
461
|
|
|
if actual_value is not None: |
|
462
|
|
|
shopfloor2_energy_data["total_in_category"] += actual_value |
|
463
|
|
|
|
|
464
|
|
|
# Calculate difference |
|
465
|
|
|
diff = dict() |
|
466
|
|
|
diff["values"] = list() |
|
467
|
|
|
diff["total_in_category"] = Decimal(0.0) |
|
468
|
|
|
|
|
469
|
|
|
# Ensure both shopfloors have the same number of data points |
|
470
|
|
|
min_length = min( |
|
471
|
|
|
len(shopfloor1_energy_data["values"]), len(shopfloor2_energy_data["values"]) |
|
472
|
|
|
) |
|
473
|
|
|
for i in range(min_length): |
|
474
|
|
|
shopfloor1_value = ( |
|
475
|
|
|
shopfloor1_energy_data["values"][i] |
|
476
|
|
|
if i < len(shopfloor1_energy_data["values"]) |
|
477
|
|
|
else None |
|
478
|
|
|
) |
|
479
|
|
|
shopfloor2_value = ( |
|
480
|
|
|
shopfloor2_energy_data["values"][i] |
|
481
|
|
|
if i < len(shopfloor2_energy_data["values"]) |
|
482
|
|
|
else None |
|
483
|
|
|
) |
|
484
|
|
|
|
|
485
|
|
|
# Calculate difference, handling None values |
|
486
|
|
|
if shopfloor1_value is None and shopfloor2_value is None: |
|
487
|
|
|
diff_value = None |
|
488
|
|
|
elif shopfloor1_value is None: |
|
489
|
|
|
diff_value = None # Cannot calculate difference when one value is missing |
|
490
|
|
|
elif shopfloor2_value is None: |
|
491
|
|
|
diff_value = None # Cannot calculate difference when one value is missing |
|
492
|
|
|
else: |
|
493
|
|
|
diff_value = shopfloor1_value - shopfloor2_value |
|
494
|
|
|
diff["total_in_category"] += diff_value |
|
495
|
|
|
|
|
496
|
|
|
diff["values"].append(diff_value) |
|
497
|
|
|
|
|
498
|
|
|
################################################################################################################ |
|
499
|
|
|
# Step 5: construct the report |
|
500
|
|
|
################################################################################################################ |
|
501
|
|
|
if cursor_system: |
|
502
|
|
|
cursor_system.close() |
|
503
|
|
|
if cnx_system: |
|
504
|
|
|
cnx_system.close() |
|
505
|
|
|
|
|
506
|
|
|
if cursor_energy: |
|
507
|
|
|
cursor_energy.close() |
|
508
|
|
|
if cnx_energy: |
|
509
|
|
|
cnx_energy.close() |
|
510
|
|
|
|
|
511
|
|
|
if cursor_historical: |
|
512
|
|
|
cursor_historical.close() |
|
513
|
|
|
if cnx_historical: |
|
514
|
|
|
cnx_historical.close() |
|
515
|
|
|
|
|
516
|
|
|
result = { |
|
517
|
|
|
"shopfloor1": { |
|
518
|
|
|
"id": shopfloor1["id"], |
|
519
|
|
|
"name": shopfloor1["name"], |
|
520
|
|
|
}, |
|
521
|
|
|
"shopfloor2": { |
|
522
|
|
|
"id": shopfloor2["id"], |
|
523
|
|
|
"name": shopfloor2["name"], |
|
524
|
|
|
}, |
|
525
|
|
|
"energy_category": { |
|
526
|
|
|
"id": energy_category["id"], |
|
527
|
|
|
"name": energy_category["name"], |
|
528
|
|
|
"unit_of_measure": energy_category["unit_of_measure"], |
|
529
|
|
|
}, |
|
530
|
|
|
"reporting_period1": { |
|
531
|
|
|
"total_in_category": shopfloor1_energy_data["total_in_category"], |
|
532
|
|
|
"timestamps": shopfloor1_energy_data["timestamps"], |
|
533
|
|
|
"values": shopfloor1_energy_data["values"], |
|
534
|
|
|
}, |
|
535
|
|
|
"reporting_period2": { |
|
536
|
|
|
"total_in_category": shopfloor2_energy_data["total_in_category"], |
|
537
|
|
|
"timestamps": shopfloor2_energy_data["timestamps"], |
|
538
|
|
|
"values": shopfloor2_energy_data["values"], |
|
539
|
|
|
}, |
|
540
|
|
|
"diff": { |
|
541
|
|
|
"values": diff["values"], |
|
542
|
|
|
"total_in_category": diff["total_in_category"], |
|
543
|
|
|
}, |
|
544
|
|
|
} |
|
545
|
|
|
|
|
546
|
|
|
# export result to Excel file and then encode the file to base64 string |
|
547
|
|
|
if not is_quick_mode: |
|
548
|
|
|
result["excel_bytes_base64"] = excelexporters.shopfloorcomparison.export( |
|
549
|
|
|
result, |
|
550
|
|
|
shopfloor1["name"], |
|
551
|
|
|
shopfloor2["name"], |
|
552
|
|
|
energy_category["name"], |
|
553
|
|
|
reporting_period_start_datetime_local, |
|
554
|
|
|
reporting_period_end_datetime_local, |
|
555
|
|
|
period_type, |
|
556
|
|
|
language, |
|
557
|
|
|
) |
|
558
|
|
|
|
|
559
|
|
|
resp.text = json.dumps(result) |
|
560
|
|
|
|