|
1
|
|
|
import re |
|
2
|
|
|
from datetime import datetime, timedelta, timezone |
|
3
|
|
|
import falcon |
|
4
|
|
|
import mysql.connector |
|
5
|
|
|
import simplejson as json |
|
6
|
|
|
import config |
|
7
|
|
|
import excelexporters.powerquality |
|
8
|
|
|
from core import utilities |
|
9
|
|
|
from core.useractivity import access_control, api_key_control |
|
10
|
|
|
|
|
11
|
|
|
|
|
12
|
|
|
class Reporting: |
|
13
|
|
|
def __init__(self): |
|
14
|
|
|
""""Initializes Reporting""" |
|
15
|
|
|
pass |
|
16
|
|
|
|
|
17
|
|
|
@staticmethod |
|
18
|
|
|
def on_options(req, resp): |
|
19
|
|
|
_ = req |
|
20
|
|
|
resp.status = falcon.HTTP_200 |
|
21
|
|
|
|
|
22
|
|
|
#################################################################################################################### |
|
23
|
|
|
# PROCEDURES |
|
24
|
|
|
# Step 1: valid parameters |
|
25
|
|
|
# Step 2: query the meter and energy category |
|
26
|
|
|
# Step 3: query associated points |
|
27
|
|
|
# Step 4: query reporting period points trends |
|
28
|
|
|
# Step 5: query tariff data |
|
29
|
|
|
# Step 6: construct the report |
|
30
|
|
|
#################################################################################################################### |
|
31
|
|
|
@staticmethod |
|
32
|
|
|
def on_get(req, resp): |
|
33
|
|
|
if 'API-KEY' not in req.headers or \ |
|
34
|
|
|
not isinstance(req.headers['API-KEY'], str) or \ |
|
35
|
|
|
len(str.strip(req.headers['API-KEY'])) == 0: |
|
36
|
|
|
access_control(req) |
|
37
|
|
|
else: |
|
38
|
|
|
api_key_control(req) |
|
39
|
|
|
print(req.params) |
|
40
|
|
|
meter_id = req.params.get('meterid') |
|
41
|
|
|
meter_uuid = req.params.get('meteruuid') |
|
42
|
|
|
reporting_period_start_datetime_local = req.params.get('reportingperiodstartdatetime') |
|
43
|
|
|
reporting_period_end_datetime_local = req.params.get('reportingperiodenddatetime') |
|
44
|
|
|
language = req.params.get('language') |
|
45
|
|
|
quick_mode = req.params.get('quickmode') |
|
46
|
|
|
|
|
47
|
|
|
################################################################################################################ |
|
48
|
|
|
# Step 1: valid parameters |
|
49
|
|
|
################################################################################################################ |
|
50
|
|
|
if meter_id is None and meter_uuid is None: |
|
51
|
|
|
raise falcon.HTTPError(status=falcon.HTTP_400, title='API.BAD_REQUEST', description='API.INVALID_METER_ID') |
|
52
|
|
|
|
|
53
|
|
|
if meter_id is not None: |
|
54
|
|
|
meter_id = str.strip(meter_id) |
|
55
|
|
|
if not meter_id.isdigit() or int(meter_id) <= 0: |
|
56
|
|
|
raise falcon.HTTPError(status=falcon.HTTP_400, title='API.BAD_REQUEST', |
|
57
|
|
|
description='API.INVALID_METER_ID') |
|
58
|
|
|
|
|
59
|
|
|
if meter_uuid is not None: |
|
60
|
|
|
regex = re.compile(r'^[a-f0-9]{8}-?[a-f0-9]{4}-?4[a-f0-9]{3}-?[89ab][a-f0-9]{3}-?[a-f0-9]{12}\Z', re.I) |
|
61
|
|
|
match = regex.match(str.strip(meter_uuid)) |
|
62
|
|
|
if not bool(match): |
|
63
|
|
|
raise falcon.HTTPError(status=falcon.HTTP_400, title='API.BAD_REQUEST', |
|
64
|
|
|
description='API.INVALID_METER_UUID') |
|
65
|
|
|
|
|
66
|
|
|
timezone_offset = int(config.utc_offset[1:3]) * 60 + int(config.utc_offset[4:6]) |
|
67
|
|
|
if config.utc_offset[0] == '-': |
|
68
|
|
|
timezone_offset = -timezone_offset |
|
69
|
|
|
|
|
70
|
|
|
if reporting_period_start_datetime_local is None: |
|
71
|
|
|
raise falcon.HTTPError(status=falcon.HTTP_400, title='API.BAD_REQUEST', |
|
72
|
|
|
description="API.INVALID_REPORTING_PERIOD_START_DATETIME") |
|
73
|
|
|
else: |
|
74
|
|
|
reporting_period_start_datetime_local = str.strip(reporting_period_start_datetime_local) |
|
75
|
|
|
try: |
|
76
|
|
|
reporting_start_datetime_utc = datetime.strptime(reporting_period_start_datetime_local, |
|
77
|
|
|
'%Y-%m-%dT%H:%M:%S') |
|
78
|
|
|
except ValueError: |
|
79
|
|
|
raise falcon.HTTPError(status=falcon.HTTP_400, title='API.BAD_REQUEST', |
|
80
|
|
|
description="API.INVALID_REPORTING_PERIOD_START_DATETIME") |
|
81
|
|
|
reporting_start_datetime_utc = \ |
|
82
|
|
|
reporting_start_datetime_utc.replace(tzinfo=timezone.utc) - timedelta(minutes=timezone_offset) |
|
83
|
|
|
# nomalize the start datetime |
|
84
|
|
|
if config.minutes_to_count == 30 and reporting_start_datetime_utc.minute >= 30: |
|
85
|
|
|
reporting_start_datetime_utc = reporting_start_datetime_utc.replace(minute=30, second=0, microsecond=0) |
|
86
|
|
|
else: |
|
87
|
|
|
reporting_start_datetime_utc = reporting_start_datetime_utc.replace(minute=0, second=0, microsecond=0) |
|
88
|
|
|
|
|
89
|
|
|
if reporting_period_end_datetime_local is None: |
|
90
|
|
|
raise falcon.HTTPError(status=falcon.HTTP_400, title='API.BAD_REQUEST', |
|
91
|
|
|
description="API.INVALID_REPORTING_PERIOD_END_DATETIME") |
|
92
|
|
|
else: |
|
93
|
|
|
reporting_period_end_datetime_local = str.strip(reporting_period_end_datetime_local) |
|
94
|
|
|
try: |
|
95
|
|
|
reporting_end_datetime_utc = datetime.strptime(reporting_period_end_datetime_local, |
|
96
|
|
|
'%Y-%m-%dT%H:%M:%S') |
|
97
|
|
|
except ValueError: |
|
98
|
|
|
raise falcon.HTTPError(status=falcon.HTTP_400, title='API.BAD_REQUEST', |
|
99
|
|
|
description="API.INVALID_REPORTING_PERIOD_END_DATETIME") |
|
100
|
|
|
reporting_end_datetime_utc = reporting_end_datetime_utc.replace(tzinfo=timezone.utc) - \ |
|
101
|
|
|
timedelta(minutes=timezone_offset) |
|
102
|
|
|
|
|
103
|
|
|
if reporting_start_datetime_utc >= reporting_end_datetime_utc: |
|
104
|
|
|
raise falcon.HTTPError(status=falcon.HTTP_400, title='API.BAD_REQUEST', |
|
105
|
|
|
description='API.INVALID_REPORTING_PERIOD_END_DATETIME') |
|
106
|
|
|
|
|
107
|
|
|
# if turn quick mode on, do not return parameters data and excel file |
|
108
|
|
|
is_quick_mode = False |
|
109
|
|
|
if quick_mode is not None and \ |
|
110
|
|
|
len(str.strip(quick_mode)) > 0 and \ |
|
111
|
|
|
str.lower(str.strip(quick_mode)) in ('true', 't', 'on', 'yes', 'y'): |
|
112
|
|
|
is_quick_mode = True |
|
113
|
|
|
|
|
114
|
|
|
trans = utilities.get_translation(language) |
|
115
|
|
|
trans.install() |
|
116
|
|
|
_ = trans.gettext |
|
117
|
|
|
|
|
118
|
|
|
################################################################################################################ |
|
119
|
|
|
# Step 2: query the meter and energy category |
|
120
|
|
|
################################################################################################################ |
|
121
|
|
|
cnx_system = mysql.connector.connect(**config.myems_system_db) |
|
122
|
|
|
cursor_system = cnx_system.cursor() |
|
123
|
|
|
|
|
124
|
|
|
cnx_historical = mysql.connector.connect(**config.myems_historical_db) |
|
125
|
|
|
cursor_historical = cnx_historical.cursor() |
|
126
|
|
|
if meter_id is not None: |
|
127
|
|
|
cursor_system.execute(" SELECT m.id, m.name, m.cost_center_id, m.energy_category_id, " |
|
128
|
|
|
" ec.name, ec.unit_of_measure, ec.kgce, ec.kgco2e " |
|
129
|
|
|
" FROM tbl_meters m, tbl_energy_categories ec " |
|
130
|
|
|
" WHERE m.id = %s AND m.energy_category_id = ec.id ", (meter_id,)) |
|
131
|
|
|
row_meter = cursor_system.fetchone() |
|
132
|
|
|
elif meter_uuid is not None: |
|
133
|
|
|
cursor_system.execute(" SELECT m.id, m.name, m.cost_center_id, m.energy_category_id, " |
|
134
|
|
|
" ec.name, ec.unit_of_measure, ec.kgce, ec.kgco2e " |
|
135
|
|
|
" FROM tbl_meters m, tbl_energy_categories ec " |
|
136
|
|
|
" WHERE m.uuid = %s AND m.energy_category_id = ec.id ", (meter_uuid,)) |
|
137
|
|
|
row_meter = cursor_system.fetchone() |
|
138
|
|
|
|
|
139
|
|
|
if row_meter is None: |
|
|
|
|
|
|
140
|
|
|
if cursor_system: |
|
141
|
|
|
cursor_system.close() |
|
142
|
|
|
if cnx_system: |
|
143
|
|
|
cnx_system.close() |
|
144
|
|
|
|
|
145
|
|
|
if cursor_historical: |
|
146
|
|
|
cursor_historical.close() |
|
147
|
|
|
if cnx_historical: |
|
148
|
|
|
cnx_historical.close() |
|
149
|
|
|
raise falcon.HTTPError(status=falcon.HTTP_404, title='API.NOT_FOUND', description='API.METER_NOT_FOUND') |
|
150
|
|
|
meter = dict() |
|
151
|
|
|
meter['id'] = row_meter[0] |
|
152
|
|
|
meter['name'] = row_meter[1] |
|
153
|
|
|
meter['cost_center_id'] = row_meter[2] |
|
154
|
|
|
meter['energy_category_id'] = row_meter[3] |
|
155
|
|
|
meter['energy_category_name'] = row_meter[4] |
|
156
|
|
|
meter['unit_of_measure'] = row_meter[5] |
|
157
|
|
|
meter['kgce'] = row_meter[6] |
|
158
|
|
|
meter['kgco2e'] = row_meter[7] |
|
159
|
|
|
|
|
160
|
|
|
################################################################################################################ |
|
161
|
|
|
# Step 3: query associated points |
|
162
|
|
|
################################################################################################################ |
|
163
|
|
|
point_list = list() |
|
164
|
|
|
cursor_system.execute(" SELECT p.id, p.name, p.units, p.object_type " |
|
165
|
|
|
" FROM tbl_meters m, tbl_meters_points mp, tbl_points p " |
|
166
|
|
|
" WHERE m.id = %s AND m.id = mp.meter_id AND mp.point_id = p.id " |
|
167
|
|
|
" ORDER BY p.id ", (meter['id'],)) |
|
168
|
|
|
rows_points = cursor_system.fetchall() |
|
169
|
|
|
if rows_points is not None and len(rows_points) > 0: |
|
170
|
|
|
for row in rows_points: |
|
171
|
|
|
point_list.append({"id": row[0], "name": row[1], "units": row[2], "object_type": row[3]}) |
|
172
|
|
|
|
|
173
|
|
|
################################################################################################################ |
|
174
|
|
|
# Step 4: query reporting period points trends |
|
175
|
|
|
################################################################################################################ |
|
176
|
|
|
reporting = dict() |
|
177
|
|
|
reporting['names'] = list() |
|
178
|
|
|
reporting['timestamps'] = list() |
|
179
|
|
|
reporting['values'] = list() |
|
180
|
|
|
reporting['units'] = list() |
|
181
|
|
|
|
|
182
|
|
|
for point in point_list: |
|
183
|
|
|
if is_quick_mode and point['object_type'] != 'ENERGY_VALUE': |
|
184
|
|
|
continue |
|
185
|
|
|
|
|
186
|
|
|
point_value_list = list() |
|
187
|
|
|
point_timestamp_list = list() |
|
188
|
|
|
if point['object_type'] == 'ENERGY_VALUE': |
|
189
|
|
|
query = (" SELECT utc_date_time, actual_value " |
|
190
|
|
|
" FROM tbl_energy_value " |
|
191
|
|
|
" WHERE point_id = %s " |
|
192
|
|
|
" AND utc_date_time BETWEEN %s AND %s " |
|
193
|
|
|
" ORDER BY utc_date_time ") |
|
194
|
|
|
cursor_historical.execute(query, (point['id'], |
|
195
|
|
|
reporting_start_datetime_utc, |
|
196
|
|
|
reporting_end_datetime_utc)) |
|
197
|
|
|
rows = cursor_historical.fetchall() |
|
198
|
|
|
|
|
199
|
|
|
if rows is not None and len(rows) > 0: |
|
200
|
|
|
for row in rows: |
|
201
|
|
|
current_datetime_local = row[0].replace(tzinfo=timezone.utc) + \ |
|
202
|
|
|
timedelta(minutes=timezone_offset) |
|
203
|
|
|
current_datetime = current_datetime_local.isoformat()[0:19] |
|
204
|
|
|
point_timestamp_list.append(current_datetime) |
|
205
|
|
|
point_value_list.append(row[1]) |
|
206
|
|
|
elif point['object_type'] == 'ANALOG_VALUE': |
|
207
|
|
|
query = (" SELECT utc_date_time, actual_value " |
|
208
|
|
|
" FROM tbl_analog_value " |
|
209
|
|
|
" WHERE point_id = %s " |
|
210
|
|
|
" AND utc_date_time BETWEEN %s AND %s " |
|
211
|
|
|
" ORDER BY utc_date_time ") |
|
212
|
|
|
cursor_historical.execute(query, (point['id'], |
|
213
|
|
|
reporting_start_datetime_utc, |
|
214
|
|
|
reporting_end_datetime_utc)) |
|
215
|
|
|
rows = cursor_historical.fetchall() |
|
216
|
|
|
|
|
217
|
|
|
if rows is not None and len(rows) > 0: |
|
218
|
|
|
for row in rows: |
|
219
|
|
|
current_datetime_local = row[0].replace(tzinfo=timezone.utc) + \ |
|
220
|
|
|
timedelta(minutes=timezone_offset) |
|
221
|
|
|
current_datetime = current_datetime_local.isoformat()[0:19] |
|
222
|
|
|
point_timestamp_list.append(current_datetime) |
|
223
|
|
|
point_value_list.append(row[1]) |
|
224
|
|
|
elif point['object_type'] == 'DIGITAL_VALUE': |
|
225
|
|
|
query = (" SELECT utc_date_time, actual_value " |
|
226
|
|
|
" FROM tbl_digital_value " |
|
227
|
|
|
" WHERE point_id = %s " |
|
228
|
|
|
" AND utc_date_time BETWEEN %s AND %s " |
|
229
|
|
|
" ORDER BY utc_date_time ") |
|
230
|
|
|
cursor_historical.execute(query, (point['id'], |
|
231
|
|
|
reporting_start_datetime_utc, |
|
232
|
|
|
reporting_end_datetime_utc)) |
|
233
|
|
|
rows = cursor_historical.fetchall() |
|
234
|
|
|
|
|
235
|
|
|
if rows is not None and len(rows) > 0: |
|
236
|
|
|
for row in rows: |
|
237
|
|
|
current_datetime_local = row[0].replace(tzinfo=timezone.utc) + \ |
|
238
|
|
|
timedelta(minutes=timezone_offset) |
|
239
|
|
|
current_datetime = current_datetime_local.isoformat()[0:19] |
|
240
|
|
|
point_timestamp_list.append(current_datetime) |
|
241
|
|
|
point_value_list.append(row[1]) |
|
242
|
|
|
|
|
243
|
|
|
reporting['names'].append(point['name'] + ' (' + point['units'] + ')') |
|
244
|
|
|
reporting['timestamps'].append(point_timestamp_list) |
|
245
|
|
|
reporting['values'].append(point_value_list) |
|
246
|
|
|
reporting['units'].append(point['units']) |
|
247
|
|
|
|
|
248
|
|
|
################################################################################################################ |
|
249
|
|
|
# Step 4.1: analyze power quality by unit (A, V, HZ) |
|
250
|
|
|
################################################################################################################ |
|
251
|
|
|
def _safe_float_list(values): |
|
252
|
|
|
return [float(v) for v in values if v is not None] |
|
253
|
|
|
|
|
254
|
|
|
def _calc_basic_stats(values): |
|
255
|
|
|
n = len(values) |
|
256
|
|
|
if n == 0: |
|
257
|
|
|
return None |
|
258
|
|
|
vmin = min(values) |
|
259
|
|
|
vmax = max(values) |
|
260
|
|
|
mean = sum(values) / n |
|
261
|
|
|
# population standard deviation |
|
262
|
|
|
variance = sum((x - mean) ** 2 for x in values) / n |
|
263
|
|
|
std = variance ** 0.5 |
|
264
|
|
|
# percentiles |
|
265
|
|
|
sorted_vals = sorted(values) |
|
266
|
|
|
def _percentile(p): |
|
267
|
|
|
if n == 1: |
|
268
|
|
|
return sorted_vals[0] |
|
269
|
|
|
k = (n - 1) * p |
|
270
|
|
|
f = int(k) |
|
271
|
|
|
c = f + 1 |
|
272
|
|
|
if c >= n: |
|
273
|
|
|
return sorted_vals[-1] |
|
274
|
|
|
d0 = sorted_vals[f] * (c - k) |
|
275
|
|
|
d1 = sorted_vals[c] * (k - f) |
|
276
|
|
|
return d0 + d1 |
|
277
|
|
|
p5 = _percentile(0.05) |
|
278
|
|
|
p95 = _percentile(0.95) |
|
279
|
|
|
return { |
|
280
|
|
|
'count': n, |
|
281
|
|
|
'min': vmin, |
|
282
|
|
|
'max': vmax, |
|
283
|
|
|
'mean': mean, |
|
284
|
|
|
'std': std, |
|
285
|
|
|
'p5': p5, |
|
286
|
|
|
'p95': p95 |
|
287
|
|
|
} |
|
288
|
|
|
|
|
289
|
|
|
analysis = list() |
|
290
|
|
|
# helper to get nominal values from config or default |
|
291
|
|
|
nominal_voltage = getattr(config, 'nominal_voltage', 220.0) |
|
292
|
|
|
nominal_frequency = getattr(config, 'nominal_frequency', 50.0) |
|
293
|
|
|
|
|
294
|
|
|
# Collect indices by unit for grouping |
|
295
|
|
|
voltage_indices = [i for i, u in enumerate(reporting['units']) if (u or '').upper() == 'V'] |
|
296
|
|
|
current_indices = [i for i, u in enumerate(reporting['units']) if (u or '').upper() == 'A'] |
|
297
|
|
|
freq_indices = [i for i, u in enumerate(reporting['units']) if (u or '').upper() in ('HZ', 'HERTZ')] |
|
298
|
|
|
|
|
299
|
|
|
# 1) Voltage deviation (GB/T 12325): compute deviation and compliance within ±7% by default |
|
300
|
|
|
voltage_deviation_limit_pct = getattr(config, 'voltage_deviation_limit_pct', 7.0) |
|
301
|
|
|
for vidx in voltage_indices: |
|
302
|
|
|
name = reporting['names'][vidx] |
|
303
|
|
|
timestamps = reporting['timestamps'][vidx] |
|
304
|
|
|
values = _safe_float_list(reporting['values'][vidx]) |
|
305
|
|
|
if len(values) == 0 or len(values) != len(timestamps): |
|
306
|
|
|
continue |
|
307
|
|
|
deviations_pct = [] |
|
308
|
|
|
worst_abs_dev = -1.0 |
|
309
|
|
|
worst_time = None |
|
310
|
|
|
within = 0 |
|
311
|
|
|
for i, v in enumerate(values): |
|
312
|
|
|
dev_pct = (v - nominal_voltage) / nominal_voltage * 100.0 |
|
313
|
|
|
deviations_pct.append(dev_pct) |
|
314
|
|
|
abs_dev = abs(dev_pct) |
|
315
|
|
|
if abs_dev <= voltage_deviation_limit_pct: |
|
316
|
|
|
within += 1 |
|
317
|
|
|
if abs_dev > worst_abs_dev: |
|
318
|
|
|
worst_abs_dev = abs_dev |
|
319
|
|
|
worst_time = timestamps[i] |
|
320
|
|
|
compliance = within / len(values) * 100.0 |
|
321
|
|
|
stats = _calc_basic_stats(deviations_pct) |
|
322
|
|
|
analysis.append({ |
|
323
|
|
|
'point_name': name, |
|
324
|
|
|
'unit': 'V', |
|
325
|
|
|
'category': 'voltage', |
|
326
|
|
|
'type': 'voltage_deviation', |
|
327
|
|
|
'limit_pct': voltage_deviation_limit_pct, |
|
328
|
|
|
'compliance_pct': compliance, |
|
329
|
|
|
'worst_abs_deviation_pct': worst_abs_dev, |
|
330
|
|
|
'worst_time': worst_time, |
|
331
|
|
|
'metrics': [ |
|
332
|
|
|
{'name': 'mean_deviation_pct', 'value': stats['mean'] if stats else None}, |
|
333
|
|
|
{'name': 'p95_abs_deviation_pct', 'value': abs(stats['p95']) if stats else None} |
|
334
|
|
|
] |
|
335
|
|
|
}) |
|
336
|
|
|
|
|
337
|
|
|
# 2) Voltage unbalance (GB/T 15543): if we have 3-phase voltage series, compute unbalance rate |
|
338
|
|
|
if len(voltage_indices) >= 3: |
|
339
|
|
|
# pick first three |
|
340
|
|
|
triplet = voltage_indices[:3] |
|
341
|
|
|
ts0 = reporting['timestamps'][triplet[0]] |
|
342
|
|
|
ts1 = reporting['timestamps'][triplet[1]] |
|
343
|
|
|
ts2 = reporting['timestamps'][triplet[2]] |
|
344
|
|
|
v0 = _safe_float_list(reporting['values'][triplet[0]]) |
|
345
|
|
|
v1 = _safe_float_list(reporting['values'][triplet[1]]) |
|
346
|
|
|
v2 = _safe_float_list(reporting['values'][triplet[2]]) |
|
347
|
|
View Code Duplication |
if len(v0) and len(v0) == len(v1) == len(v2) and ts0 == ts1 == ts2: |
|
|
|
|
|
|
348
|
|
|
unbalance_rates = [] |
|
349
|
|
|
worst = -1.0 |
|
350
|
|
|
worst_time = None |
|
351
|
|
|
for i in range(len(v0)): |
|
352
|
|
|
avg_v = (v0[i] + v1[i] + v2[i]) / 3.0 |
|
353
|
|
|
if avg_v <= 0: |
|
354
|
|
|
continue |
|
355
|
|
|
max_dev = max(abs(v0[i] - avg_v), abs(v1[i] - avg_v), abs(v2[i] - avg_v)) |
|
356
|
|
|
rate_pct = max_dev / avg_v * 100.0 |
|
357
|
|
|
unbalance_rates.append(rate_pct) |
|
358
|
|
|
if rate_pct > worst: |
|
359
|
|
|
worst = rate_pct |
|
360
|
|
|
worst_time = ts0[i] |
|
361
|
|
|
limit_pct = getattr(config, 'voltage_unbalance_limit_pct', 2.0) |
|
362
|
|
|
within = sum(1 for r in unbalance_rates if r <= limit_pct) |
|
363
|
|
|
compliance = (within / len(unbalance_rates) * 100.0) if unbalance_rates else None |
|
364
|
|
|
stats = _calc_basic_stats(unbalance_rates) if unbalance_rates else None |
|
365
|
|
|
analysis.append({ |
|
366
|
|
|
'point_name': 'Three-phase voltage', |
|
367
|
|
|
'unit': 'V', |
|
368
|
|
|
'category': 'voltage', |
|
369
|
|
|
'type': 'voltage_unbalance', |
|
370
|
|
|
'limit_pct': limit_pct, |
|
371
|
|
|
'compliance_pct': compliance, |
|
372
|
|
|
'worst_unbalance_pct': worst, |
|
373
|
|
|
'worst_time': worst_time, |
|
374
|
|
|
'metrics': [ |
|
375
|
|
|
{'name': 'mean_unbalance_pct', 'value': stats['mean'] if stats else None}, |
|
376
|
|
|
{'name': 'p95_unbalance_pct', 'value': stats['p95'] if stats else None} |
|
377
|
|
|
] |
|
378
|
|
|
}) |
|
379
|
|
|
|
|
380
|
|
|
# 3) Frequency deviation (GB/T 15945): compliance within ±0.2 Hz; severe > 0.5 Hz |
|
381
|
|
|
freq_normal_limit_hz = getattr(config, 'frequency_normal_limit_hz', 0.2) |
|
382
|
|
|
freq_severe_limit_hz = getattr(config, 'frequency_severe_limit_hz', 0.5) |
|
383
|
|
|
for fidx in freq_indices: |
|
384
|
|
|
name = reporting['names'][fidx] |
|
385
|
|
|
timestamps = reporting['timestamps'][fidx] |
|
386
|
|
|
values = _safe_float_list(reporting['values'][fidx]) |
|
387
|
|
|
if len(values) == 0 or len(values) != len(timestamps): |
|
388
|
|
|
continue |
|
389
|
|
|
abs_devs = [] |
|
390
|
|
|
within = 0 |
|
391
|
|
|
severe = 0 |
|
392
|
|
|
worst = -1.0 |
|
393
|
|
|
worst_time = None |
|
394
|
|
|
for i, hz in enumerate(values): |
|
395
|
|
|
dev = abs(hz - nominal_frequency) |
|
396
|
|
|
abs_devs.append(dev) |
|
397
|
|
|
if dev <= freq_normal_limit_hz: |
|
398
|
|
|
within += 1 |
|
399
|
|
|
if dev > freq_severe_limit_hz: |
|
400
|
|
|
severe += 1 |
|
401
|
|
|
if dev > worst: |
|
402
|
|
|
worst = dev |
|
403
|
|
|
worst_time = timestamps[i] |
|
404
|
|
|
compliance = within / len(values) * 100.0 |
|
405
|
|
|
stats = _calc_basic_stats(abs_devs) |
|
406
|
|
|
analysis.append({ |
|
407
|
|
|
'point_name': name, |
|
408
|
|
|
'unit': 'Hz', |
|
409
|
|
|
'category': 'frequency', |
|
410
|
|
|
'type': 'frequency_deviation', |
|
411
|
|
|
'limit_normal_hz': freq_normal_limit_hz, |
|
412
|
|
|
'limit_severe_hz': freq_severe_limit_hz, |
|
413
|
|
|
'compliance_pct': compliance, |
|
414
|
|
|
'severe_exceed_count': severe, |
|
415
|
|
|
'worst_deviation_hz': worst, |
|
416
|
|
|
'worst_time': worst_time, |
|
417
|
|
|
'metrics': [ |
|
418
|
|
|
{'name': 'mean_abs_deviation_hz', 'value': stats['mean'] if stats else None}, |
|
419
|
|
|
{'name': 'p95_abs_deviation_hz', 'value': stats['p95'] if stats else None} |
|
420
|
|
|
] |
|
421
|
|
|
}) |
|
422
|
|
|
|
|
423
|
|
|
# 4) Current unbalance (reference similar method): compute 3-phase current unbalance if available |
|
424
|
|
|
if len(current_indices) >= 3: |
|
425
|
|
|
triplet = current_indices[:3] |
|
426
|
|
|
ts0 = reporting['timestamps'][triplet[0]] |
|
427
|
|
|
ts1 = reporting['timestamps'][triplet[1]] |
|
428
|
|
|
ts2 = reporting['timestamps'][triplet[2]] |
|
429
|
|
|
i0 = _safe_float_list(reporting['values'][triplet[0]]) |
|
430
|
|
|
i1 = _safe_float_list(reporting['values'][triplet[1]]) |
|
431
|
|
|
i2 = _safe_float_list(reporting['values'][triplet[2]]) |
|
432
|
|
View Code Duplication |
if len(i0) and len(i0) == len(i1) == len(i2) and ts0 == ts1 == ts2: |
|
|
|
|
|
|
433
|
|
|
unbalance_rates = [] |
|
434
|
|
|
worst = -1.0 |
|
435
|
|
|
worst_time = None |
|
436
|
|
|
for i in range(len(i0)): |
|
437
|
|
|
avg_i = (i0[i] + i1[i] + i2[i]) / 3.0 |
|
438
|
|
|
if avg_i <= 0: |
|
439
|
|
|
continue |
|
440
|
|
|
max_dev = max(abs(i0[i] - avg_i), abs(i1[i] - avg_i), abs(i2[i] - avg_i)) |
|
441
|
|
|
rate_pct = max_dev / avg_i * 100.0 |
|
442
|
|
|
unbalance_rates.append(rate_pct) |
|
443
|
|
|
if rate_pct > worst: |
|
444
|
|
|
worst = rate_pct |
|
445
|
|
|
worst_time = ts0[i] |
|
446
|
|
|
limit_pct = getattr(config, 'current_unbalance_limit_pct', 10.0) |
|
447
|
|
|
within = sum(1 for r in unbalance_rates if r <= limit_pct) |
|
448
|
|
|
compliance = (within / len(unbalance_rates) * 100.0) if unbalance_rates else None |
|
449
|
|
|
stats = _calc_basic_stats(unbalance_rates) if unbalance_rates else None |
|
450
|
|
|
analysis.append({ |
|
451
|
|
|
'point_name': 'Three-phase current', |
|
452
|
|
|
'unit': 'A', |
|
453
|
|
|
'category': 'current', |
|
454
|
|
|
'type': 'current_unbalance', |
|
455
|
|
|
'limit_pct': limit_pct, |
|
456
|
|
|
'compliance_pct': compliance, |
|
457
|
|
|
'worst_unbalance_pct': worst, |
|
458
|
|
|
'worst_time': worst_time, |
|
459
|
|
|
'metrics': [ |
|
460
|
|
|
{'name': 'mean_unbalance_pct', 'value': stats['mean'] if stats else None}, |
|
461
|
|
|
{'name': 'p95_unbalance_pct', 'value': stats['p95'] if stats else None} |
|
462
|
|
|
] |
|
463
|
|
|
}) |
|
464
|
|
|
for idx, name in enumerate(reporting['names']): |
|
465
|
|
|
unit = (reporting['units'][idx] or '').upper() |
|
466
|
|
|
values = _safe_float_list(reporting['values'][idx]) |
|
467
|
|
|
if len(values) == 0: |
|
468
|
|
|
continue |
|
469
|
|
|
stats = _calc_basic_stats(values) |
|
470
|
|
|
if stats is None: |
|
471
|
|
|
continue |
|
472
|
|
|
category = None |
|
473
|
|
|
if 'A' == unit: |
|
474
|
|
|
category = 'current' |
|
475
|
|
|
elif 'V' == unit: |
|
476
|
|
|
category = 'voltage' |
|
477
|
|
|
elif 'HZ' == unit or 'HERTZ' == unit: |
|
478
|
|
|
category = 'frequency' |
|
479
|
|
|
# only include targeted categories |
|
480
|
|
|
if category is None: |
|
481
|
|
|
continue |
|
482
|
|
|
analysis.append({ |
|
483
|
|
|
'point_name': name, |
|
484
|
|
|
'unit': reporting['units'][idx], |
|
485
|
|
|
'category': category, |
|
486
|
|
|
'metrics': [ |
|
487
|
|
|
{'name': 'count', 'value': stats['count']}, |
|
488
|
|
|
{'name': 'min', 'value': stats['min']}, |
|
489
|
|
|
{'name': 'max', 'value': stats['max']}, |
|
490
|
|
|
{'name': 'mean', 'value': stats['mean']}, |
|
491
|
|
|
{'name': 'std', 'value': stats['std']}, |
|
492
|
|
|
{'name': 'p5', 'value': stats['p5']}, |
|
493
|
|
|
{'name': 'p95', 'value': stats['p95']} |
|
494
|
|
|
] |
|
495
|
|
|
}) |
|
496
|
|
|
|
|
497
|
|
|
# Step 5 removed: drop tariff/parameters in power quality API |
|
498
|
|
|
|
|
499
|
|
|
################################################################################################################ |
|
500
|
|
|
# Step 6: construct the report |
|
501
|
|
|
################################################################################################################ |
|
502
|
|
|
if cursor_system: |
|
503
|
|
|
cursor_system.close() |
|
504
|
|
|
if cnx_system: |
|
505
|
|
|
cnx_system.close() |
|
506
|
|
|
|
|
507
|
|
|
if cursor_historical: |
|
508
|
|
|
cursor_historical.close() |
|
509
|
|
|
if cnx_historical: |
|
510
|
|
|
cnx_historical.close() |
|
511
|
|
|
|
|
512
|
|
|
result = { |
|
513
|
|
|
"meter": { |
|
514
|
|
|
"cost_center_id": meter['cost_center_id'], |
|
515
|
|
|
"energy_category_id": meter['energy_category_id'], |
|
516
|
|
|
"energy_category_name": meter['energy_category_name'], |
|
517
|
|
|
"unit_of_measure": meter['unit_of_measure'], |
|
518
|
|
|
"kgce": meter['kgce'], |
|
519
|
|
|
"kgco2e": meter['kgco2e'], |
|
520
|
|
|
}, |
|
521
|
|
|
"reporting_period": { |
|
522
|
|
|
"names": reporting['names'], |
|
523
|
|
|
"timestamps": reporting['timestamps'], |
|
524
|
|
|
"values": reporting['values'], |
|
525
|
|
|
}, |
|
526
|
|
|
"parameters": None, |
|
527
|
|
|
"analysis": analysis, |
|
528
|
|
|
"excel_bytes_base64": None |
|
529
|
|
|
} |
|
530
|
|
|
# export result to Excel file and then encode the file to base64 string |
|
531
|
|
|
if not is_quick_mode: |
|
532
|
|
|
result['excel_bytes_base64'] = excelexporters.powerqulity.export(result, |
|
533
|
|
|
meter['name'], |
|
534
|
|
|
reporting_period_start_datetime_local, |
|
535
|
|
|
reporting_period_end_datetime_local, |
|
536
|
|
|
None, |
|
537
|
|
|
language) |
|
538
|
|
|
|
|
539
|
|
|
resp.text = json.dumps(result) |
|
540
|
|
|
|