1
|
|
|
<?php |
2
|
|
|
|
3
|
|
|
namespace lucidtaz\minimax\engine; |
4
|
|
|
|
5
|
|
|
use lucidtaz\minimax\game\GameState; |
6
|
|
|
use lucidtaz\minimax\game\Player; |
7
|
|
|
|
8
|
|
|
/** |
9
|
|
|
* Node in the decision search tree |
10
|
|
|
* An object of this class can be queried for its ideal decision (and according |
11
|
|
|
* score) by calling the decide() method. It will recursively construct child |
12
|
|
|
* nodes and evaluate them using that method as well. |
13
|
|
|
*/ |
14
|
|
|
class DecisionNode |
15
|
|
|
{ |
16
|
|
|
/** |
17
|
|
|
* @var Player The player to optimize for. |
18
|
|
|
*/ |
19
|
|
|
private $objectivePlayer; |
20
|
|
|
|
21
|
|
|
/** |
22
|
|
|
* @var GameState The current GameState to base future decisions on. |
23
|
|
|
*/ |
24
|
|
|
private $state; |
25
|
|
|
|
26
|
|
|
/** |
27
|
|
|
* @var int Limit on how deep we can continue to search, recursion limiter. |
28
|
|
|
*/ |
29
|
|
|
private $depthLeft; |
30
|
|
|
|
31
|
|
|
/** |
32
|
|
|
* @var NodeType Whether we are a min-node or a max-node. This enables the |
33
|
|
|
* caller to select either the most favorable or the least favorable |
34
|
|
|
* outcome. |
35
|
|
|
*/ |
36
|
|
|
private $type; |
37
|
|
|
|
38
|
|
|
/** |
39
|
|
|
* @param Player $objectivePlayer The Player to optimize for |
40
|
|
|
* @param GameState $state Current GameState to base decisions on |
41
|
|
|
* @param int $depthLeft Recursion limiter |
42
|
|
|
* @param NodeType $type Signifies whether to minimize or maximize the score |
43
|
|
|
*/ |
44
|
12 |
|
public function __construct(Player $objectivePlayer, GameState $state, int $depthLeft, NodeType $type) |
45
|
|
|
{ |
46
|
12 |
|
$this->objectivePlayer = $objectivePlayer; |
47
|
12 |
|
$this->state = $state; |
48
|
12 |
|
$this->depthLeft = $depthLeft; |
49
|
12 |
|
$this->type = $type; |
50
|
12 |
|
} |
51
|
|
|
|
52
|
|
|
/** |
53
|
|
|
* Determine the ideal move for this node |
54
|
|
|
* This means either the best or the worst possible outcome for the |
55
|
|
|
* objective player, based on who is actually playing. (If the objective |
56
|
|
|
* player is currently playing, we take the best outcome, otherwise we take |
57
|
|
|
* the worst. This reflects that the opponent also plays optimally.) |
58
|
|
|
*/ |
59
|
12 |
|
public function traverseGameTree(): TraversalResult |
60
|
|
|
{ |
61
|
12 |
|
if ($this->depthLeft == 0) { |
62
|
11 |
|
return TraversalResult::onlyEvaluation($this->makeLeafResult()); |
63
|
|
|
} |
64
|
|
|
|
65
|
|
|
/* @var $possibleMoves GameState[] */ |
66
|
12 |
|
$possibleMoves = $this->state->getPossibleMoves(); |
67
|
12 |
|
if (empty($possibleMoves)) { |
68
|
9 |
|
return TraversalResult::onlyEvaluation($this->makeLeafResult()); |
69
|
|
|
} |
70
|
|
|
|
71
|
12 |
|
$idealResult = null; |
72
|
12 |
|
$idealMove = null; |
73
|
12 |
|
foreach ($possibleMoves as $move) { |
74
|
12 |
|
$moveResult = $this->getChildResult($move); |
75
|
|
|
|
76
|
12 |
|
if ($idealResult === null || $this->isIdealOver($moveResult, $idealResult)) { |
77
|
12 |
|
$idealResult = $moveResult; |
78
|
12 |
|
$idealMove = $move; |
79
|
|
|
} |
80
|
|
|
} |
81
|
|
|
|
82
|
12 |
|
return TraversalResult::create($idealMove, $idealResult); |
|
|
|
|
83
|
|
|
} |
84
|
|
|
|
85
|
|
|
/** |
86
|
|
|
* Formulate the evaluation result, this node being a leaf node |
87
|
|
|
*/ |
88
|
12 |
|
private function makeLeafResult(): EvaluationResult |
89
|
|
|
{ |
90
|
12 |
|
$result = new EvaluationResult(); |
91
|
12 |
|
$result->age = $this->depthLeft; |
92
|
12 |
|
$result->score = $this->state->evaluateScore($this->objectivePlayer); |
93
|
12 |
|
return $result; |
94
|
|
|
} |
95
|
|
|
|
96
|
|
|
/** |
97
|
|
|
* Recursively evaluate a child decision |
98
|
|
|
* Apply a move and evaluate the outcome |
99
|
|
|
* @param GameState $stateAfterMove The GameState that was created as a |
100
|
|
|
* result of a possible move. |
101
|
|
|
*/ |
102
|
12 |
|
private function getChildResult(GameState $stateAfterMove): EvaluationResult |
103
|
|
|
{ |
104
|
12 |
|
$nextPlayerIsFriendly = $stateAfterMove->getNextPlayer()->isFriendsWith($this->objectivePlayer); |
105
|
12 |
|
$nextDecisionPoint = new static( |
106
|
12 |
|
$this->objectivePlayer, |
107
|
|
|
$stateAfterMove, |
108
|
12 |
|
$this->depthLeft - 1, |
109
|
12 |
|
$nextPlayerIsFriendly ? $this->type : $this->type->alternate() |
110
|
|
|
); |
111
|
12 |
|
return $nextDecisionPoint->traverseGameTree()->evaluation; |
112
|
|
|
} |
113
|
|
|
|
114
|
|
|
/** |
115
|
|
|
* Compare two evaluation results |
116
|
|
|
* The meaning of "best" is decided by the "ideal" member variable |
117
|
|
|
* comparator |
118
|
|
|
*/ |
119
|
11 |
|
private function isIdealOver(EvaluationResult $a, EvaluationResult $b): bool |
120
|
|
|
{ |
121
|
11 |
|
$ideal = $this->type == NodeType::MIN() |
122
|
11 |
|
? EvaluationResult::getWorstComparator() |
123
|
11 |
|
: EvaluationResult::getBestComparator(); |
124
|
11 |
|
$idealEvaluationResult = $ideal($a, $b); |
125
|
11 |
|
return $idealEvaluationResult > 0; |
126
|
|
|
} |
127
|
|
|
} |
128
|
|
|
|
Unless you are absolutely sure that the expression can never be null because of other conditions, we strongly recommend to add an additional type check to your code: