|
1
|
|
|
from functools import lru_cache, cmp_to_key |
|
2
|
|
|
from itertools import product, starmap |
|
3
|
|
|
from math import log |
|
4
|
|
|
from operator import mul |
|
5
|
|
|
|
|
6
|
|
|
PRIME_FACTORS = (2, 3, 5) |
|
7
|
|
|
|
|
8
|
|
|
|
|
9
|
|
|
class Factors: |
|
10
|
|
|
def __init__(self, factor): |
|
11
|
|
|
self.factor = factor |
|
12
|
|
|
self.current = 1 |
|
13
|
|
|
|
|
14
|
|
|
def pop(self, value: int) -> int | None: |
|
15
|
|
|
if value == self.current: |
|
16
|
|
|
ret = self.current |
|
17
|
|
|
self.current *= self.factor |
|
18
|
|
|
return ret |
|
19
|
|
|
|
|
20
|
|
|
|
|
21
|
|
|
@lru_cache |
|
22
|
|
|
def is_ugly(n: int) -> bool: |
|
23
|
|
|
if n == 1: |
|
24
|
|
|
return True |
|
25
|
|
|
for prime in PRIME_FACTORS: |
|
26
|
|
|
while n % prime == 0: |
|
27
|
|
|
n //= prime |
|
28
|
|
|
return n == 1 |
|
29
|
|
|
|
|
30
|
|
|
|
|
31
|
|
|
def find_ugly_number(n: int, ugly_numbers=[1], queue=[1], confirmed_to=1) -> int: |
|
32
|
|
|
if len(ugly_numbers[:ugly_numbers.index(confirmed_to) + 1]) >= n: |
|
33
|
|
|
return ugly_numbers[n - 1] |
|
34
|
|
|
new_numbers = list(starmap(mul, product(PRIME_FACTORS, queue))) |
|
35
|
|
|
return find_ugly_number(n, sorted(set(ugly_numbers + new_numbers)), new_numbers, min(new_numbers)) |
|
36
|
|
|
|
|
37
|
|
|
|
|
38
|
|
|
def find_ugly_number2(n: int, current_number=1) -> int: |
|
39
|
|
|
counter = 0 |
|
40
|
|
|
while counter < n: |
|
41
|
|
|
if is_ugly(current_number): |
|
42
|
|
|
counter += 1 |
|
43
|
|
|
current_number += 1 |
|
44
|
|
|
else: |
|
45
|
|
|
current_number += 1 |
|
46
|
|
|
return current_number - 1 |
|
47
|
|
|
|
|
48
|
|
|
|
|
49
|
|
|
def find_ugly_number3(n: int) -> int: |
|
50
|
|
|
permutations = product(range(n), set([0] + list(range(n * 2 // 3))), set([0] + list(range(n * 2 // 5)))) |
|
51
|
|
|
numbers = sorted([2 ** i[0] * 3 ** i[1] * 5 ** i[2] for i in permutations]) |
|
52
|
|
|
return numbers |
|
53
|
|
|
|
|
54
|
|
|
|
|
55
|
|
|
def find_ugly_number4(n: int) -> int: |
|
56
|
|
|
factor_list = [Factors(i) for i in [2, 3, 5, 6, 10, 15, 30]] |
|
57
|
|
|
for i in range(n): |
|
58
|
|
|
value_to_pick = min([i.current for i in factor_list]) |
|
59
|
|
|
[i.pop(value_to_pick) for i in factor_list] |
|
60
|
|
|
print(value_to_pick) |
|
61
|
|
|
|
|
62
|
|
|
|
|
63
|
|
|
def compare_tuples(a, b): |
|
64
|
|
|
return (a[0] - b[0]) * log(2) + (a[1] - b[1]) * log(3) + (a[2] - b[2]) * log(5) |
|
65
|
|
|
|
|
66
|
|
|
|
|
67
|
|
|
def find_ugly_number5(n: int) -> int: |
|
68
|
|
|
known_ugly_numbers = [] |
|
69
|
|
|
candidates = [(0, 0, 0)] |
|
70
|
|
|
for _ in range(n): |
|
71
|
|
|
next_to_add = candidates[0] |
|
72
|
|
|
del candidates[0] |
|
73
|
|
|
known_ugly_numbers.append(next_to_add) |
|
74
|
|
|
new_candidate2 = (next_to_add[0] + 1, next_to_add[1], next_to_add[2]) |
|
75
|
|
|
new_candidate3 = (next_to_add[0], next_to_add[1] + 1, next_to_add[2]) |
|
76
|
|
|
new_candidate5 = (next_to_add[0], next_to_add[1], next_to_add[2] + 1) |
|
77
|
|
|
for i in [new_candidate2, new_candidate3, new_candidate5]: |
|
78
|
|
|
if i not in candidates and i not in known_ugly_numbers: |
|
79
|
|
|
candidates.append(i) |
|
80
|
|
|
candidates = sorted(candidates, key=cmp_to_key(compare_tuples)) |
|
81
|
|
|
return 2 ** known_ugly_numbers[-1][0] * 3 ** known_ugly_numbers[-1][1] * 5 ** known_ugly_numbers[-1][2] |
|
82
|
|
|
|
|
83
|
|
|
|
|
84
|
|
|
def ugly_number(n: int) -> int: |
|
85
|
|
|
return find_ugly_number5(n) |
|
86
|
|
|
|
|
87
|
|
|
|
|
88
|
|
|
if __name__ == "__main__": |
|
89
|
|
|
print("Example:") |
|
90
|
|
|
print(ugly_number(4)) |
|
91
|
|
|
|
|
92
|
|
|
# These "asserts" are used for self-checking and not for an auto-testing |
|
93
|
|
|
assert ugly_number(4) == 4 |
|
94
|
|
|
assert ugly_number(6) == 6 |
|
95
|
|
|
assert ugly_number(11) == 15 |
|
96
|
|
|
print("Ugly Numbers coding complete? Click 'Check' to earn cool rewards!") |
|
97
|
|
|
|