|
1
|
|
|
<?php |
|
2
|
|
|
|
|
3
|
|
|
namespace Samsara\Fermat\Provider; |
|
4
|
|
|
|
|
5
|
|
|
use Samsara\Exceptions\SystemError\LogicalError\IncompatibleObjectState; |
|
6
|
|
|
use Samsara\Exceptions\SystemError\PlatformError\MissingPackage; |
|
7
|
|
|
use Samsara\Exceptions\UsageError\IntegrityConstraint; |
|
8
|
|
|
use Samsara\Fermat\Enums\CalcMode; |
|
9
|
|
|
use Samsara\Fermat\Enums\NumberBase; |
|
10
|
|
|
use Samsara\Fermat\Numbers; |
|
11
|
|
|
use Samsara\Fermat\Types\Base\Interfaces\Numbers\DecimalInterface; |
|
12
|
|
|
use Samsara\Fermat\Types\Base\Interfaces\Numbers\NumberInterface; |
|
13
|
|
|
use Samsara\Fermat\Types\NumberCollection; |
|
14
|
|
|
use Samsara\Fermat\Values\ImmutableDecimal; |
|
15
|
|
|
|
|
16
|
|
|
/** |
|
17
|
|
|
* |
|
18
|
|
|
*/ |
|
19
|
|
|
class SequenceProvider |
|
20
|
|
|
{ |
|
21
|
|
|
|
|
22
|
|
|
const EULER_ZIGZAG = [ |
|
23
|
|
|
'1', // 0 |
|
24
|
|
|
'1', // 1 |
|
25
|
|
|
'1', // 2 |
|
26
|
|
|
'2', // 3 |
|
27
|
|
|
'5', // 4 |
|
28
|
|
|
'16', // 5 |
|
29
|
|
|
'61', // 6 |
|
30
|
|
|
'272', // 7 |
|
31
|
|
|
'1385', // 8 |
|
32
|
|
|
'7936', // 9 |
|
33
|
|
|
'50521', // 10 |
|
34
|
|
|
'353792', // 11 |
|
35
|
|
|
'2702765', // 12 |
|
36
|
|
|
'22368256', // 13 |
|
37
|
|
|
'199360981', // 14 |
|
38
|
|
|
'1903757312', // 15 |
|
39
|
|
|
'19391512145', // 16 |
|
40
|
|
|
'209865342976', // 17 |
|
41
|
|
|
'2404879675441', // 18 |
|
42
|
|
|
'29088885112832', // 19 |
|
43
|
|
|
'370371188237525', // 20 |
|
44
|
|
|
'4951498053124096', // 21 |
|
45
|
|
|
'69348874393137901', // 22 |
|
46
|
|
|
'1015423886506852352', // 23 |
|
47
|
|
|
'15514534163557086905', // 24 |
|
48
|
|
|
'246921480190207983616', // 25 |
|
49
|
|
|
'4087072509293123892361', // 26 |
|
50
|
|
|
'70251601603943959887872', // 27 |
|
51
|
|
|
'1252259641403629865468285', // 28 |
|
52
|
|
|
'23119184187809597841473536', // 29 |
|
53
|
|
|
'441543893249023104553682821', // 30 |
|
54
|
|
|
'8713962757125169296170811392', // 31 |
|
55
|
|
|
'177519391579539289436664789665', // 32 |
|
56
|
|
|
'3729407703720529571097509625856', // 33 |
|
57
|
|
|
'80723299235887898062168247453281', // 34 |
|
58
|
|
|
'1798651693450888780071750349094912', // 35 |
|
59
|
|
|
'41222060339517702122347079671259045', // 36 |
|
60
|
|
|
'970982810785059112379399707952152576', // 37 |
|
61
|
|
|
'23489580527043108252017828576198947741', // 38 |
|
62
|
|
|
'583203324917310043943191641625494290432', // 39 |
|
63
|
|
|
'14851150718114980017877156781405826684425', // 40 |
|
64
|
|
|
'387635983772083031828014624002175135645696', // 41 |
|
65
|
|
|
'10364622733519612119397957304745185976310201', // 42 |
|
66
|
|
|
'283727921907431909304183316295787837183229952', // 43 |
|
67
|
|
|
'7947579422597592703608040510088070619519273805', // 44 |
|
68
|
|
|
'227681379129930886488600284336316164603920777216', // 45 |
|
69
|
|
|
'6667537516685544977435028474773748197524107684661', // 46 |
|
70
|
|
|
'199500252157859031027160499643195658166340757225472', // 47 |
|
71
|
|
|
'6096278645568542158691685742876843153976539044435185', // 48 |
|
72
|
|
|
'190169564657928428175235445073924928592047775873499136', // 49 |
|
73
|
|
|
'6053285248188621896314383785111649088103498225146815121', // 50 |
|
74
|
|
|
]; |
|
75
|
|
|
|
|
76
|
|
|
/** |
|
77
|
|
|
* OEIS: A005408 |
|
78
|
|
|
* |
|
79
|
|
|
* @param int $n |
|
80
|
|
|
* @param bool $asCollection |
|
81
|
|
|
* @param int $collectionSize |
|
82
|
|
|
* |
|
83
|
|
|
* @return DecimalInterface|NumberInterface|NumberCollection |
|
84
|
|
|
* @throws IntegrityConstraint|\ReflectionException |
|
85
|
|
|
*/ |
|
86
|
29 |
|
public static function nthOddNumber(int $n, bool $asCollection = false, int $collectionSize = 10) |
|
87
|
|
|
{ |
|
88
|
29 |
|
if ($asCollection) { |
|
89
|
1 |
|
$sequence = new NumberCollection(); |
|
90
|
|
|
|
|
91
|
1 |
|
for ($i = 0;$i < $collectionSize;$i++) { |
|
92
|
1 |
|
$sequence->push(self::nthOddNumber($n + $i)); |
|
93
|
|
|
} |
|
94
|
|
|
|
|
95
|
1 |
|
return $sequence; |
|
96
|
|
|
} |
|
97
|
|
|
|
|
98
|
29 |
|
if ($n >= (PHP_INT_MAX/2)) { |
|
99
|
|
|
$n = new ImmutableDecimal($n, 100); |
|
100
|
|
|
|
|
101
|
|
|
return $n->multiply(2)->add(1); |
|
102
|
|
|
} else { |
|
103
|
29 |
|
return new ImmutableDecimal(($n*2)+1, 100); |
|
104
|
|
|
} |
|
105
|
|
|
|
|
106
|
|
|
} |
|
107
|
|
|
|
|
108
|
|
|
/** |
|
109
|
|
|
* OEIS: A005843 |
|
110
|
|
|
* |
|
111
|
|
|
* @param int $n |
|
112
|
|
|
* @param bool $asCollection |
|
113
|
|
|
* @param int $collectionSize |
|
114
|
|
|
* |
|
115
|
|
|
* @return DecimalInterface|NumberInterface|NumberCollection |
|
116
|
|
|
* @throws IntegrityConstraint |
|
117
|
|
|
*/ |
|
118
|
17 |
|
public static function nthEvenNumber(int $n, int $scale = null, bool $asCollection = false, int $collectionSize = 10) |
|
119
|
|
|
{ |
|
120
|
|
|
|
|
121
|
17 |
|
if ($asCollection) { |
|
122
|
1 |
|
$sequence = new NumberCollection(); |
|
123
|
|
|
|
|
124
|
1 |
|
for ($i = 0;$i < $collectionSize;$i++) { |
|
125
|
1 |
|
$sequence->push(self::nthEvenNumber($n + $i)); |
|
126
|
|
|
} |
|
127
|
|
|
|
|
128
|
1 |
|
return $sequence; |
|
129
|
|
|
} |
|
130
|
17 |
|
if ($n > (PHP_INT_MAX/2)) { |
|
131
|
|
|
$n = Numbers::makeOrDont(Numbers::IMMUTABLE, $n, $scale); |
|
132
|
|
|
|
|
133
|
|
|
return $n->multiply(2); |
|
134
|
|
|
} else { |
|
135
|
17 |
|
return new ImmutableDecimal(($n*2), $scale); |
|
136
|
|
|
} |
|
137
|
|
|
|
|
138
|
|
|
} |
|
139
|
|
|
|
|
140
|
|
|
/** |
|
141
|
|
|
* OEIS: A033999 |
|
142
|
|
|
* |
|
143
|
|
|
* @param int $n |
|
144
|
|
|
* @param bool $asCollection |
|
145
|
|
|
* @param int $collectionSize |
|
146
|
|
|
* |
|
147
|
|
|
* @return DecimalInterface|NumberInterface|NumberCollection |
|
148
|
|
|
* @throws IntegrityConstraint |
|
149
|
|
|
*/ |
|
150
|
1 |
|
public static function nthPowerNegativeOne(int $n, bool $asCollection = false, int $collectionSize = 10) |
|
151
|
|
|
{ |
|
152
|
|
|
|
|
153
|
1 |
|
if ($asCollection) { |
|
154
|
1 |
|
$sequence = new NumberCollection(); |
|
155
|
|
|
|
|
156
|
1 |
|
for ($i = 0;$i < $collectionSize;$i++) { |
|
157
|
1 |
|
$sequence->push(self::nthPowerNegativeOne($n + $i)); |
|
158
|
|
|
} |
|
159
|
|
|
|
|
160
|
1 |
|
return $sequence; |
|
161
|
|
|
} |
|
162
|
|
|
|
|
163
|
1 |
|
return ($n % 2 ? new ImmutableDecimal(-1) : new ImmutableDecimal(1)); |
|
164
|
|
|
|
|
165
|
|
|
} |
|
166
|
|
|
|
|
167
|
|
|
/** |
|
168
|
|
|
* OEIS: A000111 |
|
169
|
|
|
* |
|
170
|
|
|
* @param int $n |
|
171
|
|
|
* @param bool $asCollection |
|
172
|
|
|
* @param int $collectionSize |
|
173
|
|
|
* |
|
174
|
|
|
* @return DecimalInterface|NumberInterface|NumberCollection |
|
175
|
|
|
* @throws IntegrityConstraint |
|
176
|
|
|
*/ |
|
177
|
1 |
|
public static function nthEulerZigzag(int $n, bool $asCollection = false, int $collectionSize = 10) |
|
178
|
|
|
{ |
|
179
|
|
|
|
|
180
|
1 |
|
if ($asCollection) { |
|
181
|
1 |
|
$sequence = new NumberCollection(); |
|
182
|
|
|
|
|
183
|
1 |
|
for ($i = 0;$i < $collectionSize;$i++) { |
|
184
|
1 |
|
$sequence->push(self::nthEulerZigzag($n + $i)); |
|
185
|
|
|
} |
|
186
|
|
|
|
|
187
|
1 |
|
return $sequence; |
|
188
|
|
|
} |
|
189
|
|
|
|
|
190
|
1 |
|
if ($n > 50) { |
|
191
|
1 |
|
throw new IntegrityConstraint( |
|
192
|
|
|
'$n cannot be larger than 50', |
|
193
|
|
|
'Limit your use of the Euler Zigzag Sequence to the 50th index', |
|
194
|
|
|
'This library does not support the Euler Zigzag Sequence (OEIS: A000111) beyond E(50)' |
|
195
|
|
|
); |
|
196
|
|
|
} |
|
197
|
|
|
|
|
198
|
1 |
|
return Numbers::make(Numbers::IMMUTABLE, static::EULER_ZIGZAG[$n], 100); |
|
199
|
|
|
|
|
200
|
|
|
} |
|
201
|
|
|
|
|
202
|
|
|
/** |
|
203
|
|
|
* Returns the nth Bernoulli Number, where odd indexes return zero, and B1() is -1/2. |
|
204
|
|
|
* |
|
205
|
|
|
* This function gets very slow if you demand large precision. |
|
206
|
|
|
* |
|
207
|
|
|
* @param $n |
|
208
|
|
|
* @param int|null $scale |
|
209
|
|
|
* @return DecimalInterface |
|
210
|
|
|
* @throws IncompatibleObjectState |
|
211
|
|
|
* @throws IntegrityConstraint |
|
212
|
|
|
* @throws MissingPackage |
|
213
|
|
|
*/ |
|
214
|
1 |
|
public static function nthBernoulliNumber($n, ?int $scale = null): DecimalInterface |
|
215
|
|
|
{ |
|
216
|
|
|
|
|
217
|
1 |
|
$scale = $scale ?? 5; |
|
218
|
|
|
|
|
219
|
1 |
|
$internalScale = (int)ceil($scale*(log10($scale)+1)); |
|
220
|
|
|
|
|
221
|
1 |
|
$n = Numbers::makeOrDont(Numbers::IMMUTABLE, $n, $internalScale)->setMode(CalcMode::Precision); |
|
222
|
|
|
|
|
223
|
1 |
|
if (!$n->isWhole()) { |
|
224
|
|
|
throw new IntegrityConstraint( |
|
225
|
|
|
'Only integers may be indexes for Bernoulli numbers', |
|
226
|
|
|
'Ensure only integers are provided as indexes', |
|
227
|
|
|
'An attempt was made to get a Bernoulli number with a non-integer index' |
|
228
|
|
|
); |
|
229
|
|
|
} |
|
230
|
|
|
|
|
231
|
1 |
|
if ($n->isLessThan(0)) { |
|
232
|
|
|
throw new IntegrityConstraint( |
|
233
|
|
|
'Index must be non-negative', |
|
234
|
|
|
'Provide only non-negative indexes for Bernoulli number generation', |
|
235
|
|
|
'An attempt was made to get a Bernoulli number with a negative index' |
|
236
|
|
|
); |
|
237
|
|
|
} |
|
238
|
|
|
|
|
239
|
1 |
|
if ($n->isEqual(0)) { |
|
240
|
1 |
|
return Numbers::makeOne($scale); |
|
241
|
|
|
} |
|
242
|
|
|
|
|
243
|
1 |
|
if ($n->isEqual(1)) { |
|
244
|
1 |
|
return Numbers::make(Numbers::IMMUTABLE, '-0.5', $scale); |
|
245
|
|
|
} |
|
246
|
|
|
|
|
247
|
1 |
|
if ($n->modulo(2)->isEqual(1)) { |
|
248
|
1 |
|
return Numbers::makeZero($scale); |
|
249
|
|
|
} |
|
250
|
|
|
|
|
251
|
1 |
|
$tau = Numbers::makeTau($internalScale)->setMode(CalcMode::Precision); |
|
252
|
|
|
|
|
253
|
1 |
|
$d = Numbers::make(Numbers::IMMUTABLE, 4, $internalScale)->setMode(CalcMode::Precision)->add( |
|
254
|
1 |
|
$n->factorial()->ln($internalScale)->subtract( |
|
255
|
1 |
|
$n->multiply($tau->log10($internalScale)) |
|
256
|
1 |
|
)->truncate() |
|
|
|
|
|
|
257
|
1 |
|
)->add( |
|
258
|
1 |
|
$n->numberOfIntDigits() |
|
259
|
|
|
); |
|
260
|
1 |
|
$s = $d->multiply( |
|
261
|
1 |
|
Numbers::makeNaturalLog10($internalScale) |
|
262
|
1 |
|
)->multiply( |
|
263
|
|
|
'0.5' |
|
264
|
1 |
|
)->divide($n, $internalScale)->exp($internalScale)->truncate()->add(1); |
|
|
|
|
|
|
265
|
1 |
|
$internalScale = ($d->isGreaterThan($internalScale)) ? $d->asInt() : $internalScale; |
|
|
|
|
|
|
266
|
|
|
|
|
267
|
1 |
|
$s = $s->truncateToScale($internalScale); |
|
|
|
|
|
|
268
|
1 |
|
$n = $n->truncateToScale($internalScale); |
|
269
|
1 |
|
$tau = Numbers::make2Pi($internalScale)->setMode(CalcMode::Precision); |
|
270
|
1 |
|
$p = Numbers::makeOne($internalScale)->setMode(CalcMode::Precision); |
|
271
|
1 |
|
$t1 = Numbers::makeOne($internalScale)->setMode(CalcMode::Precision); |
|
272
|
1 |
|
$t2 = Numbers::makeOne($internalScale)->setMode(CalcMode::Precision); |
|
273
|
|
|
|
|
274
|
1 |
|
while ($p->isLessThanOrEqualTo($s)) { |
|
275
|
1 |
|
$p = self::_nextprime($p); |
|
276
|
1 |
|
$pn = $p->pow($n); |
|
277
|
1 |
|
$pn1 = $pn->subtract(1); |
|
278
|
1 |
|
$t1 = $pn->multiply($t1); |
|
279
|
1 |
|
$t2 = $pn1->multiply($t2); |
|
280
|
|
|
} |
|
281
|
|
|
|
|
282
|
1 |
|
$z = $t1->divide($t2, $internalScale); |
|
283
|
1 |
|
$oz = Numbers::makeZero($internalScale)->setMode(CalcMode::Precision); |
|
284
|
|
|
|
|
285
|
1 |
|
while (!$oz->isEqual($z)) { |
|
286
|
1 |
|
$oz = $z; |
|
287
|
1 |
|
$p = self::_nextprime($p); |
|
288
|
1 |
|
$pn = $p->pow($n); |
|
289
|
1 |
|
$pn1 = $z->divide($pn, $internalScale); |
|
290
|
1 |
|
$z = $z->add($pn1); |
|
291
|
|
|
} |
|
292
|
|
|
|
|
293
|
1 |
|
$f = $n->factorial(); |
|
294
|
1 |
|
$taun = $tau->pow($n); |
|
295
|
|
|
|
|
296
|
1 |
|
$z = $z->multiply(2)->multiply($f)->divide($taun, $internalScale); |
|
297
|
|
|
|
|
298
|
1 |
|
if ($n->modulo(4)->isEqual(0)) { |
|
299
|
1 |
|
$z = $z->multiply(-1); |
|
300
|
|
|
} |
|
301
|
|
|
|
|
302
|
1 |
|
return $z->round($scale); |
|
|
|
|
|
|
303
|
|
|
|
|
304
|
|
|
} |
|
305
|
|
|
|
|
306
|
|
|
/** |
|
307
|
|
|
* @param int $n |
|
308
|
|
|
* @return NumberCollection |
|
309
|
|
|
* @throws IntegrityConstraint |
|
310
|
|
|
* @throws MissingPackage |
|
311
|
|
|
*/ |
|
312
|
|
|
public static function nthPrimeNumbers(int $n): NumberCollection |
|
313
|
|
|
{ |
|
314
|
|
|
$collection = new NumberCollection(); |
|
315
|
|
|
|
|
316
|
|
|
$collection->push(Numbers::make(Numbers::IMMUTABLE, 2)); |
|
317
|
|
|
|
|
318
|
|
|
$currentPrime = Numbers::make(Numbers::IMMUTABLE, 3); |
|
319
|
|
|
|
|
320
|
|
|
for ($i = 1;$i < $n;$i++) { |
|
321
|
|
|
while (!$currentPrime->isPrime()) { |
|
|
|
|
|
|
322
|
|
|
$currentPrime = $currentPrime->add(2); |
|
323
|
|
|
} |
|
324
|
|
|
|
|
325
|
|
|
$collection->push($currentPrime); |
|
326
|
|
|
$currentPrime = $currentPrime->add(2); |
|
327
|
|
|
} |
|
328
|
|
|
|
|
329
|
|
|
return $collection; |
|
330
|
|
|
} |
|
331
|
|
|
|
|
332
|
|
|
/** |
|
333
|
|
|
* OEIS: A000045 |
|
334
|
|
|
* |
|
335
|
|
|
* This uses an implementation of the fast-doubling Karatsuba multiplication algorithm as described by 'Nayuki': |
|
336
|
|
|
* |
|
337
|
|
|
* https://www.nayuki.io/page/fast-fibonacci-algorithms |
|
338
|
|
|
* |
|
339
|
|
|
* @param int $n |
|
340
|
|
|
* @param bool $asCollection |
|
341
|
|
|
* @param int $collectionSize |
|
342
|
|
|
* |
|
343
|
|
|
* @return ImmutableDecimal|NumberCollection |
|
344
|
|
|
* @throws IntegrityConstraint |
|
345
|
|
|
*/ |
|
346
|
2 |
|
public static function nthFibonacciNumber(int $n, bool $asCollection = false, int $collectionSize = 10) |
|
347
|
|
|
{ |
|
348
|
2 |
|
$n = Numbers::makeOrDont(Numbers::IMMUTABLE, $n); |
|
349
|
|
|
|
|
350
|
2 |
|
if ($n->isLessThan(0)) { |
|
|
|
|
|
|
351
|
1 |
|
throw new IntegrityConstraint( |
|
352
|
|
|
'Negative term numbers not valid for Fibonacci Sequence', |
|
353
|
|
|
'Provide a positive term number', |
|
354
|
|
|
'A negative term number for the Fibonacci sequence was requested; provide a positive term number' |
|
355
|
|
|
); |
|
356
|
|
|
} |
|
357
|
|
|
|
|
358
|
1 |
|
$fastFib = static::_fib($n); |
|
|
|
|
|
|
359
|
|
|
|
|
360
|
1 |
|
if ($asCollection) { |
|
361
|
1 |
|
$sequence = new NumberCollection(); |
|
362
|
1 |
|
$sequence->push($fastFib[0]); |
|
363
|
1 |
|
$sequence->push($fastFib[1]); |
|
364
|
1 |
|
for ($i = 0;$i < ($collectionSize-2);$i++) { |
|
365
|
1 |
|
$sequence->push($sequence->get($i)->add($sequence[$i+1])); |
|
366
|
|
|
} |
|
367
|
|
|
|
|
368
|
1 |
|
return $sequence; |
|
369
|
|
|
} |
|
370
|
|
|
|
|
371
|
1 |
|
return $fastFib[0]; |
|
372
|
|
|
} |
|
373
|
|
|
|
|
374
|
|
|
/** |
|
375
|
|
|
* @param ImmutableDecimal $number |
|
376
|
|
|
* @return ImmutableDecimal[] |
|
377
|
|
|
* @throws IntegrityConstraint |
|
378
|
|
|
*/ |
|
379
|
1 |
|
private static function _fib(ImmutableDecimal $number): array |
|
380
|
|
|
{ |
|
381
|
1 |
|
if ($number->isEqual(0)) { |
|
382
|
1 |
|
return [Numbers::makeZero(), Numbers::makeOne()]; |
|
383
|
|
|
} |
|
384
|
|
|
|
|
385
|
|
|
/** |
|
386
|
|
|
* @var ImmutableDecimal $a |
|
387
|
|
|
* @var ImmutableDecimal $b |
|
388
|
|
|
* @var ImmutableDecimal $prevCall |
|
389
|
|
|
*/ |
|
390
|
1 |
|
$prevCall = $number->divide(2)->floor(); |
|
|
|
|
|
|
391
|
1 |
|
[$a, $b] = static::_fib($prevCall); |
|
392
|
1 |
|
$c = $a->multiply($b->multiply(2)->subtract($a)); |
|
393
|
1 |
|
$d = $a->multiply($a)->add($b->multiply($b)); |
|
394
|
|
|
|
|
395
|
1 |
|
if ($number->modulo(2)->isEqual(0)) { |
|
396
|
1 |
|
return [$c, $d]; |
|
397
|
|
|
} |
|
398
|
|
|
|
|
399
|
1 |
|
return [$d, $c->add($d)]; |
|
400
|
|
|
} |
|
401
|
|
|
|
|
402
|
1 |
|
private static function _nextprime(ImmutableDecimal $number): ImmutableDecimal |
|
403
|
|
|
{ |
|
404
|
1 |
|
if (function_exists('gmp_nextprime')) { |
|
405
|
1 |
|
return Numbers::make(Numbers::IMMUTABLE, gmp_strval(gmp_nextprime($number->getValue(NumberBase::Ten)))); |
|
406
|
|
|
} |
|
407
|
|
|
|
|
408
|
|
|
$number = $number->add(1); |
|
409
|
|
|
while (!$number->isPrime()) { |
|
|
|
|
|
|
410
|
|
|
if ($number->modulo(2)->isEqual(1)) { |
|
|
|
|
|
|
411
|
|
|
$number = $number->add(2); |
|
412
|
|
|
} else { |
|
413
|
|
|
$number = $number->add(1); |
|
414
|
|
|
} |
|
415
|
|
|
} |
|
416
|
|
|
|
|
417
|
|
|
return $number; |
|
418
|
|
|
} |
|
419
|
|
|
|
|
420
|
|
|
} |
This check looks for calls to methods that do not seem to exist on a given type. It looks for the method on the type itself as well as in inherited classes or implemented interfaces.
This is most likely a typographical error or the method has been renamed.