| Total Complexity | 276 | 
| Complexity/F | 3.83 | 
| Lines of Code | 4050 | 
| Function Count | 72 | 
| Duplicated Lines | 40 | 
| Ratio | 0.99 % | 
| Changes | 0 | ||
Duplicate code is one of the most pungent code smells. A rule that is often used is to re-structure code once it is duplicated in three or more places.
Common duplication problems, and corresponding solutions are:
Complex classes like node_modules/node-forge/lib/tls.js often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.
Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.
| 1 | /** | ||
| 233 | var forge = require('./forge'); | ||
| 234 | require('./asn1'); | ||
| 235 | require('./hmac'); | ||
| 236 | require('./md5'); | ||
| 237 | require('./pem'); | ||
| 238 | require('./pki'); | ||
| 239 | require('./random'); | ||
| 240 | require('./sha1'); | ||
| 241 | require('./util'); | ||
| 242 | |||
| 243 | /** | ||
| 244 | * Generates pseudo random bytes by mixing the result of two hash functions, | ||
| 245 | * MD5 and SHA-1. | ||
| 246 | * | ||
| 247 | * prf_TLS1(secret, label, seed) = | ||
| 248 | * P_MD5(S1, label + seed) XOR P_SHA-1(S2, label + seed); | ||
| 249 | * | ||
| 250 | * Each P_hash function functions as follows: | ||
| 251 | * | ||
| 252 | * P_hash(secret, seed) = HMAC_hash(secret, A(1) + seed) + | ||
| 253 | * HMAC_hash(secret, A(2) + seed) + | ||
| 254 | * HMAC_hash(secret, A(3) + seed) + ... | ||
| 255 | * A() is defined as: | ||
| 256 | * A(0) = seed | ||
| 257 | * A(i) = HMAC_hash(secret, A(i-1)) | ||
| 258 | * | ||
| 259 | * The '+' operator denotes concatenation. | ||
| 260 | * | ||
| 261 | * As many iterations A(N) as are needed are performed to generate enough | ||
| 262 | * pseudo random byte output. If an iteration creates more data than is | ||
| 263 | * necessary, then it is truncated. | ||
| 264 | * | ||
| 265 | * Therefore: | ||
| 266 | * A(1) = HMAC_hash(secret, A(0)) | ||
| 267 | * = HMAC_hash(secret, seed) | ||
| 268 | * A(2) = HMAC_hash(secret, A(1)) | ||
| 269 | * = HMAC_hash(secret, HMAC_hash(secret, seed)) | ||
| 270 | * | ||
| 271 | * Therefore: | ||
| 272 | * P_hash(secret, seed) = | ||
| 273 | * HMAC_hash(secret, HMAC_hash(secret, A(0)) + seed) + | ||
| 274 | * HMAC_hash(secret, HMAC_hash(secret, A(1)) + seed) + | ||
| 275 | * ... | ||
| 276 | * | ||
| 277 | * Therefore: | ||
| 278 | * P_hash(secret, seed) = | ||
| 279 | * HMAC_hash(secret, HMAC_hash(secret, seed) + seed) + | ||
| 280 | * HMAC_hash(secret, HMAC_hash(secret, HMAC_hash(secret, seed)) + seed) + | ||
| 281 | * ... | ||
| 282 | * | ||
| 283 | * @param secret the secret to use. | ||
| 284 | * @param label the label to use. | ||
| 285 | * @param seed the seed value to use. | ||
| 286 | * @param length the number of bytes to generate. | ||
| 287 | * | ||
| 288 | * @return the pseudo random bytes in a byte buffer. | ||
| 289 | */ | ||
| 290 | var prf_TLS1 = function(secret, label, seed, length) { | ||
| 291 | var rval = forge.util.createBuffer(); | ||
| 292 | |||
| 293 | /* For TLS 1.0, the secret is split in half, into two secrets of equal | ||
| 294 | length. If the secret has an odd length then the last byte of the first | ||
| 295 | half will be the same as the first byte of the second. The length of the | ||
| 296 | two secrets is half of the secret rounded up. */ | ||
| 297 | var idx = (secret.length >> 1); | ||
| 298 | var slen = idx + (secret.length & 1); | ||
| 299 | var s1 = secret.substr(0, slen); | ||
| 300 | var s2 = secret.substr(idx, slen); | ||
| 301 | var ai = forge.util.createBuffer(); | ||
| 302 | var hmac = forge.hmac.create(); | ||
| 303 | seed = label + seed; | ||
| 304 | |||
| 305 | // determine the number of iterations that must be performed to generate | ||
| 306 | // enough output bytes, md5 creates 16 byte hashes, sha1 creates 20 | ||
| 307 | var md5itr = Math.ceil(length / 16); | ||
| 308 | var sha1itr = Math.ceil(length / 20); | ||
| 309 | |||
| 310 | // do md5 iterations | ||
| 311 |   hmac.start('MD5', s1); | ||
| 312 | var md5bytes = forge.util.createBuffer(); | ||
| 313 | ai.putBytes(seed); | ||
| 314 |   for(var i = 0; i < md5itr; ++i) { | ||
| 315 | // HMAC_hash(secret, A(i-1)) | ||
| 316 | hmac.start(null, null); | ||
| 317 | hmac.update(ai.getBytes()); | ||
| 318 | ai.putBuffer(hmac.digest()); | ||
| 319 | |||
| 320 | // HMAC_hash(secret, A(i) + seed) | ||
| 321 | hmac.start(null, null); | ||
| 322 | hmac.update(ai.bytes() + seed); | ||
| 323 | md5bytes.putBuffer(hmac.digest()); | ||
| 324 | } | ||
| 325 | |||
| 326 | // do sha1 iterations | ||
| 327 |   hmac.start('SHA1', s2); | ||
| 328 | var sha1bytes = forge.util.createBuffer(); | ||
| 329 | ai.clear(); | ||
| 330 | ai.putBytes(seed); | ||
| 331 |   for(var i = 0; i < sha1itr; ++i) { | ||
| 332 | // HMAC_hash(secret, A(i-1)) | ||
| 333 | hmac.start(null, null); | ||
| 334 | hmac.update(ai.getBytes()); | ||
| 335 | ai.putBuffer(hmac.digest()); | ||
| 336 | |||
| 337 | // HMAC_hash(secret, A(i) + seed) | ||
| 338 | hmac.start(null, null); | ||
| 339 | hmac.update(ai.bytes() + seed); | ||
| 340 | sha1bytes.putBuffer(hmac.digest()); | ||
| 341 | } | ||
| 342 | |||
| 343 | // XOR the md5 bytes with the sha1 bytes | ||
| 344 | rval.putBytes(forge.util.xorBytes( | ||
| 345 | md5bytes.getBytes(), sha1bytes.getBytes(), length)); | ||
| 346 | |||
| 347 | return rval; | ||
| 348 | }; | ||
| 349 | |||
| 350 | /** | ||
| 351 | * Generates pseudo random bytes using a SHA256 algorithm. For TLS 1.2. | ||
| 352 | * | ||
| 353 | * @param secret the secret to use. | ||
| 354 | * @param label the label to use. | ||
| 355 | * @param seed the seed value to use. | ||
| 356 | * @param length the number of bytes to generate. | ||
| 357 | * | ||
| 358 | * @return the pseudo random bytes in a byte buffer. | ||
| 359 | */ | ||
| 360 | var prf_sha256 = function(secret, label, seed, length) { | ||
| 361 | // FIXME: implement me for TLS 1.2 | ||
| 362 | }; | ||
| 363 | |||
| 364 | /** | ||
| 365 | * Gets a MAC for a record using the SHA-1 hash algorithm. | ||
| 366 | * | ||
| 367 | * @param key the mac key. | ||
| 368 | * @param state the sequence number (array of two 32-bit integers). | ||
| 369 | * @param record the record. | ||
| 370 | * | ||
| 371 | * @return the sha-1 hash (20 bytes) for the given record. | ||
| 372 | */ | ||
| 373 | var hmac_sha1 = function(key, seqNum, record) { | ||
| 374 | /* MAC is computed like so: | ||
| 375 | HMAC_hash( | ||
| 376 | key, seqNum + | ||
| 377 | TLSCompressed.type + | ||
| 378 | TLSCompressed.version + | ||
| 379 | TLSCompressed.length + | ||
| 380 | TLSCompressed.fragment) | ||
| 381 | */ | ||
| 382 | var hmac = forge.hmac.create(); | ||
| 383 |   hmac.start('SHA1', key); | ||
| 384 | var b = forge.util.createBuffer(); | ||
| 385 | b.putInt32(seqNum[0]); | ||
| 386 | b.putInt32(seqNum[1]); | ||
| 387 | b.putByte(record.type); | ||
| 388 | b.putByte(record.version.major); | ||
| 389 | b.putByte(record.version.minor); | ||
| 390 | b.putInt16(record.length); | ||
| 391 | b.putBytes(record.fragment.bytes()); | ||
| 392 | hmac.update(b.getBytes()); | ||
| 393 | return hmac.digest().getBytes(); | ||
| 394 | }; | ||
| 395 | |||
| 396 | /** | ||
| 397 | * Compresses the TLSPlaintext record into a TLSCompressed record using the | ||
| 398 | * deflate algorithm. | ||
| 399 | * | ||
| 400 | * @param c the TLS connection. | ||
| 401 | * @param record the TLSPlaintext record to compress. | ||
| 402 | * @param s the ConnectionState to use. | ||
| 403 | * | ||
| 404 | * @return true on success, false on failure. | ||
| 405 | */ | ||
| 406 | var deflate = function(c, record, s) { | ||
| 407 | var rval = false; | ||
| 408 | |||
| 409 |   try { | ||
| 410 | var bytes = c.deflate(record.fragment.getBytes()); | ||
| 411 | record.fragment = forge.util.createBuffer(bytes); | ||
| 412 | record.length = bytes.length; | ||
| 413 | rval = true; | ||
| 414 |   } catch(ex) { | ||
| 415 | // deflate error, fail out | ||
| 416 | } | ||
| 417 | |||
| 418 | return rval; | ||
| 419 | }; | ||
| 420 | |||
| 421 | /** | ||
| 422 | * Decompresses the TLSCompressed record into a TLSPlaintext record using the | ||
| 423 | * deflate algorithm. | ||
| 424 | * | ||
| 425 | * @param c the TLS connection. | ||
| 426 | * @param record the TLSCompressed record to decompress. | ||
| 427 | * @param s the ConnectionState to use. | ||
| 428 | * | ||
| 429 | * @return true on success, false on failure. | ||
| 430 | */ | ||
| 431 | var inflate = function(c, record, s) { | ||
| 432 | var rval = false; | ||
| 433 | |||
| 434 |   try { | ||
| 435 | var bytes = c.inflate(record.fragment.getBytes()); | ||
| 436 | record.fragment = forge.util.createBuffer(bytes); | ||
| 437 | record.length = bytes.length; | ||
| 438 | rval = true; | ||
| 439 |   } catch(ex) { | ||
| 440 | // inflate error, fail out | ||
| 441 | } | ||
| 442 | |||
| 443 | return rval; | ||
| 444 | }; | ||
| 445 | |||
| 446 | /** | ||
| 447 | * Reads a TLS variable-length vector from a byte buffer. | ||
| 448 | * | ||
| 449 | * Variable-length vectors are defined by specifying a subrange of legal | ||
| 450 | * lengths, inclusively, using the notation <floor..ceiling>. When these are | ||
| 451 | * encoded, the actual length precedes the vector's contents in the byte | ||
| 452 | * stream. The length will be in the form of a number consuming as many bytes | ||
| 453 | * as required to hold the vector's specified maximum (ceiling) length. A | ||
| 454 | * variable-length vector with an actual length field of zero is referred to | ||
| 455 | * as an empty vector. | ||
| 456 | * | ||
| 457 | * @param b the byte buffer. | ||
| 458 | * @param lenBytes the number of bytes required to store the length. | ||
| 459 | * | ||
| 460 | * @return the resulting byte buffer. | ||
| 461 | */ | ||
| 462 | var readVector = function(b, lenBytes) { | ||
| 463 | var len = 0; | ||
| 464 |   switch(lenBytes) { | ||
| 465 | case 1: | ||
| 466 | len = b.getByte(); | ||
| 467 | break; | ||
| 468 | case 2: | ||
| 469 | len = b.getInt16(); | ||
| 470 | break; | ||
| 471 | case 3: | ||
| 472 | len = b.getInt24(); | ||
| 473 | break; | ||
| 474 | case 4: | ||
| 475 | len = b.getInt32(); | ||
| 476 | break; | ||
| 477 | } | ||
| 478 | |||
| 479 | // read vector bytes into a new buffer | ||
| 480 | return forge.util.createBuffer(b.getBytes(len)); | ||
| 481 | }; | ||
| 482 | |||
| 483 | /** | ||
| 484 | * Writes a TLS variable-length vector to a byte buffer. | ||
| 485 | * | ||
| 486 | * @param b the byte buffer. | ||
| 487 | * @param lenBytes the number of bytes required to store the length. | ||
| 488 | * @param v the byte buffer vector. | ||
| 489 | */ | ||
| 490 | var writeVector = function(b, lenBytes, v) { | ||
| 491 | // encode length at the start of the vector, where the number of bytes for | ||
| 492 | // the length is the maximum number of bytes it would take to encode the | ||
| 493 | // vector's ceiling | ||
| 494 | b.putInt(v.length(), lenBytes << 3); | ||
| 495 | b.putBuffer(v); | ||
| 496 | }; | ||
| 497 | |||
| 498 | /** | ||
| 499 | * The tls implementation. | ||
| 500 | */ | ||
| 501 | var tls = {}; | ||
| 502 | |||
| 503 | /** | ||
| 504 | * Version: TLS 1.2 = 3.3, TLS 1.1 = 3.2, TLS 1.0 = 3.1. Both TLS 1.1 and | ||
| 505 | * TLS 1.2 were still too new (ie: openSSL didn't implement them) at the time | ||
| 506 | * of this implementation so TLS 1.0 was implemented instead. | ||
| 507 | */ | ||
| 508 | tls.Versions = { | ||
| 509 |   TLS_1_0: {major: 3, minor: 1}, | ||
| 510 |   TLS_1_1: {major: 3, minor: 2}, | ||
| 511 |   TLS_1_2: {major: 3, minor: 3} | ||
| 512 | }; | ||
| 513 | tls.SupportedVersions = [ | ||
| 514 | tls.Versions.TLS_1_1, | ||
| 515 | tls.Versions.TLS_1_0 | ||
| 516 | ]; | ||
| 517 | tls.Version = tls.SupportedVersions[0]; | ||
| 518 | |||
| 519 | /** | ||
| 520 | * Maximum fragment size. True maximum is 16384, but we fragment before that | ||
| 521 | * to allow for unusual small increases during compression. | ||
| 522 | */ | ||
| 523 | tls.MaxFragment = 16384 - 1024; | ||
| 524 | |||
| 525 | /** | ||
| 526 | * Whether this entity is considered the "client" or "server". | ||
| 527 |  * enum { server, client } ConnectionEnd; | ||
| 528 | */ | ||
| 529 | tls.ConnectionEnd = { | ||
| 530 | server: 0, | ||
| 531 | client: 1 | ||
| 532 | }; | ||
| 533 | |||
| 534 | /** | ||
| 535 | * Pseudo-random function algorithm used to generate keys from the master | ||
| 536 | * secret. | ||
| 537 |  * enum { tls_prf_sha256 } PRFAlgorithm; | ||
| 538 | */ | ||
| 539 | tls.PRFAlgorithm = { | ||
| 540 | tls_prf_sha256: 0 | ||
| 541 | }; | ||
| 542 | |||
| 543 | /** | ||
| 544 | * Bulk encryption algorithms. | ||
| 545 |  * enum { null, rc4, des3, aes } BulkCipherAlgorithm; | ||
| 546 | */ | ||
| 547 | tls.BulkCipherAlgorithm = { | ||
| 548 | none: null, | ||
| 549 | rc4: 0, | ||
| 550 | des3: 1, | ||
| 551 | aes: 2 | ||
| 552 | }; | ||
| 553 | |||
| 554 | /** | ||
| 555 | * Cipher types. | ||
| 556 |  * enum { stream, block, aead } CipherType; | ||
| 557 | */ | ||
| 558 | tls.CipherType = { | ||
| 559 | stream: 0, | ||
| 560 | block: 1, | ||
| 561 | aead: 2 | ||
| 562 | }; | ||
| 563 | |||
| 564 | /** | ||
| 565 | * MAC (Message Authentication Code) algorithms. | ||
| 566 |  * enum { null, hmac_md5, hmac_sha1, hmac_sha256, | ||
| 567 | * hmac_sha384, hmac_sha512} MACAlgorithm; | ||
| 568 | */ | ||
| 569 | tls.MACAlgorithm = { | ||
| 570 | none: null, | ||
| 571 | hmac_md5: 0, | ||
| 572 | hmac_sha1: 1, | ||
| 573 | hmac_sha256: 2, | ||
| 574 | hmac_sha384: 3, | ||
| 575 | hmac_sha512: 4 | ||
| 576 | }; | ||
| 577 | |||
| 578 | /** | ||
| 579 | * Compression algorithms. | ||
| 580 |  * enum { null(0), deflate(1), (255) } CompressionMethod; | ||
| 581 | */ | ||
| 582 | tls.CompressionMethod = { | ||
| 583 | none: 0, | ||
| 584 | deflate: 1 | ||
| 585 | }; | ||
| 586 | |||
| 587 | /** | ||
| 588 | * TLS record content types. | ||
| 589 |  * enum { | ||
| 590 | * change_cipher_spec(20), alert(21), handshake(22), | ||
| 591 | * application_data(23), (255) | ||
| 592 | * } ContentType; | ||
| 593 | */ | ||
| 594 | tls.ContentType = { | ||
| 595 | change_cipher_spec: 20, | ||
| 596 | alert: 21, | ||
| 597 | handshake: 22, | ||
| 598 | application_data: 23, | ||
| 599 | heartbeat: 24 | ||
| 600 | }; | ||
| 601 | |||
| 602 | /** | ||
| 603 | * TLS handshake types. | ||
| 604 |  * enum { | ||
| 605 | * hello_request(0), client_hello(1), server_hello(2), | ||
| 606 | * certificate(11), server_key_exchange (12), | ||
| 607 | * certificate_request(13), server_hello_done(14), | ||
| 608 | * certificate_verify(15), client_key_exchange(16), | ||
| 609 | * finished(20), (255) | ||
| 610 | * } HandshakeType; | ||
| 611 | */ | ||
| 612 | tls.HandshakeType = { | ||
| 613 | hello_request: 0, | ||
| 614 | client_hello: 1, | ||
| 615 | server_hello: 2, | ||
| 616 | certificate: 11, | ||
| 617 | server_key_exchange: 12, | ||
| 618 | certificate_request: 13, | ||
| 619 | server_hello_done: 14, | ||
| 620 | certificate_verify: 15, | ||
| 621 | client_key_exchange: 16, | ||
| 622 | finished: 20 | ||
| 623 | }; | ||
| 624 | |||
| 625 | /** | ||
| 626 | * TLS Alert Protocol. | ||
| 627 | * | ||
| 628 |  * enum { warning(1), fatal(2), (255) } AlertLevel; | ||
| 629 | * | ||
| 630 |  * enum { | ||
| 631 | * close_notify(0), | ||
| 632 | * unexpected_message(10), | ||
| 633 | * bad_record_mac(20), | ||
| 634 | * decryption_failed(21), | ||
| 635 | * record_overflow(22), | ||
| 636 | * decompression_failure(30), | ||
| 637 | * handshake_failure(40), | ||
| 638 | * bad_certificate(42), | ||
| 639 | * unsupported_certificate(43), | ||
| 640 | * certificate_revoked(44), | ||
| 641 | * certificate_expired(45), | ||
| 642 | * certificate_unknown(46), | ||
| 643 | * illegal_parameter(47), | ||
| 644 | * unknown_ca(48), | ||
| 645 | * access_denied(49), | ||
| 646 | * decode_error(50), | ||
| 647 | * decrypt_error(51), | ||
| 648 | * export_restriction(60), | ||
| 649 | * protocol_version(70), | ||
| 650 | * insufficient_security(71), | ||
| 651 | * internal_error(80), | ||
| 652 | * user_canceled(90), | ||
| 653 | * no_renegotiation(100), | ||
| 654 | * (255) | ||
| 655 | * } AlertDescription; | ||
| 656 | * | ||
| 657 |  * struct { | ||
| 658 | * AlertLevel level; | ||
| 659 | * AlertDescription description; | ||
| 660 | * } Alert; | ||
| 661 | */ | ||
| 662 | tls.Alert = {}; | ||
| 663 | tls.Alert.Level = { | ||
| 664 | warning: 1, | ||
| 665 | fatal: 2 | ||
| 666 | }; | ||
| 667 | tls.Alert.Description = { | ||
| 668 | close_notify: 0, | ||
| 669 | unexpected_message: 10, | ||
| 670 | bad_record_mac: 20, | ||
| 671 | decryption_failed: 21, | ||
| 672 | record_overflow: 22, | ||
| 673 | decompression_failure: 30, | ||
| 674 | handshake_failure: 40, | ||
| 675 | bad_certificate: 42, | ||
| 676 | unsupported_certificate: 43, | ||
| 677 | certificate_revoked: 44, | ||
| 678 | certificate_expired: 45, | ||
| 679 | certificate_unknown: 46, | ||
| 680 | illegal_parameter: 47, | ||
| 681 | unknown_ca: 48, | ||
| 682 | access_denied: 49, | ||
| 683 | decode_error: 50, | ||
| 684 | decrypt_error: 51, | ||
| 685 | export_restriction: 60, | ||
| 686 | protocol_version: 70, | ||
| 687 | insufficient_security: 71, | ||
| 688 | internal_error: 80, | ||
| 689 | user_canceled: 90, | ||
| 690 | no_renegotiation: 100 | ||
| 691 | }; | ||
| 692 | |||
| 693 | /** | ||
| 694 | * TLS Heartbeat Message types. | ||
| 695 |  * enum { | ||
| 696 | * heartbeat_request(1), | ||
| 697 | * heartbeat_response(2), | ||
| 698 | * (255) | ||
| 699 | * } HeartbeatMessageType; | ||
| 700 | */ | ||
| 701 | tls.HeartbeatMessageType = { | ||
| 702 | heartbeat_request: 1, | ||
| 703 | heartbeat_response: 2 | ||
| 704 | }; | ||
| 705 | |||
| 706 | /** | ||
| 707 | * Supported cipher suites. | ||
| 708 | */ | ||
| 709 | tls.CipherSuites = {}; | ||
| 710 | |||
| 711 | /** | ||
| 712 | * Gets a supported cipher suite from its 2 byte ID. | ||
| 713 | * | ||
| 714 | * @param twoBytes two bytes in a string. | ||
| 715 | * | ||
| 716 | * @return the matching supported cipher suite or null. | ||
| 717 | */ | ||
| 718 | tls.getCipherSuite = function(twoBytes) { | ||
| 719 | var rval = null; | ||
| 720 |   for(var key in tls.CipherSuites) { | ||
| 721 | var cs = tls.CipherSuites[key]; | ||
| 722 | if(cs.id[0] === twoBytes.charCodeAt(0) && | ||
| 723 |       cs.id[1] === twoBytes.charCodeAt(1)) { | ||
| 724 | rval = cs; | ||
| 725 | break; | ||
| 726 | } | ||
| 727 | } | ||
| 728 | return rval; | ||
| 729 | }; | ||
| 730 | |||
| 731 | /** | ||
| 732 | * Called when an unexpected record is encountered. | ||
| 733 | * | ||
| 734 | * @param c the connection. | ||
| 735 | * @param record the record. | ||
| 736 | */ | ||
| 737 | tls.handleUnexpected = function(c, record) { | ||
| 738 | // if connection is client and closed, ignore unexpected messages | ||
| 739 | var ignore = (!c.open && c.entity === tls.ConnectionEnd.client); | ||
| 740 |   if(!ignore) { | ||
| 741 |     c.error(c, { | ||
| 742 | message: 'Unexpected message. Received TLS record out of order.', | ||
| 743 | send: true, | ||
| 744 |       alert: { | ||
| 745 | level: tls.Alert.Level.fatal, | ||
| 746 | description: tls.Alert.Description.unexpected_message | ||
| 747 | } | ||
| 748 | }); | ||
| 749 | } | ||
| 750 | }; | ||
| 751 | |||
| 752 | /** | ||
| 753 | * Called when a client receives a HelloRequest record. | ||
| 754 | * | ||
| 755 | * @param c the connection. | ||
| 756 | * @param record the record. | ||
| 757 | * @param length the length of the handshake message. | ||
| 758 | */ | ||
| 759 | tls.handleHelloRequest = function(c, record, length) { | ||
| 760 | // ignore renegotiation requests from the server during a handshake, but | ||
| 761 | // if handshaking, send a warning alert that renegotation is denied | ||
| 762 |   if(!c.handshaking && c.handshakes > 0) { | ||
| 763 | // send alert warning | ||
| 764 |     tls.queue(c, tls.createAlert(c, { | ||
| 765 | level: tls.Alert.Level.warning, | ||
| 766 | description: tls.Alert.Description.no_renegotiation | ||
| 767 | })); | ||
| 768 | tls.flush(c); | ||
| 769 | } | ||
| 770 | |||
| 771 | // continue | ||
| 772 | c.process(); | ||
| 773 | }; | ||
| 774 | |||
| 775 | /** | ||
| 776 | * Parses a hello message from a ClientHello or ServerHello record. | ||
| 777 | * | ||
| 778 | * @param record the record to parse. | ||
| 779 | * | ||
| 780 | * @return the parsed message. | ||
| 781 | */ | ||
| 782 | tls.parseHelloMessage = function(c, record, length) { | ||
| 783 | var msg = null; | ||
| 784 | |||
| 785 | var client = (c.entity === tls.ConnectionEnd.client); | ||
| 786 | |||
| 787 | // minimum of 38 bytes in message | ||
| 788 |   if(length < 38) { | ||
| 789 |     c.error(c, { | ||
| 790 | message: client ? | ||
| 791 | 'Invalid ServerHello message. Message too short.' : | ||
| 792 | 'Invalid ClientHello message. Message too short.', | ||
| 793 | send: true, | ||
| 794 |       alert: { | ||
| 795 | level: tls.Alert.Level.fatal, | ||
| 796 | description: tls.Alert.Description.illegal_parameter | ||
| 797 | } | ||
| 798 | }); | ||
| 799 |   } else { | ||
| 800 | // use 'remaining' to calculate # of remaining bytes in the message | ||
| 801 | var b = record.fragment; | ||
| 802 | var remaining = b.length(); | ||
| 803 |     msg = { | ||
| 804 |       version: { | ||
| 805 | major: b.getByte(), | ||
| 806 | minor: b.getByte() | ||
| 807 | }, | ||
| 808 | random: forge.util.createBuffer(b.getBytes(32)), | ||
| 809 | session_id: readVector(b, 1), | ||
| 810 | extensions: [] | ||
| 811 | }; | ||
| 812 |     if(client) { | ||
| 813 | msg.cipher_suite = b.getBytes(2); | ||
| 814 | msg.compression_method = b.getByte(); | ||
| 815 |     } else { | ||
| 816 | msg.cipher_suites = readVector(b, 2); | ||
| 817 | msg.compression_methods = readVector(b, 1); | ||
| 818 | } | ||
| 819 | |||
| 820 | // read extensions if there are any bytes left in the message | ||
| 821 | remaining = length - (remaining - b.length()); | ||
| 822 |     if(remaining > 0) { | ||
| 823 | // parse extensions | ||
| 824 | var exts = readVector(b, 2); | ||
| 825 |       while(exts.length() > 0) { | ||
| 826 |         msg.extensions.push({ | ||
| 827 | type: [exts.getByte(), exts.getByte()], | ||
| 828 | data: readVector(exts, 2) | ||
| 829 | }); | ||
| 830 | } | ||
| 831 | |||
| 832 | // TODO: make extension support modular | ||
| 833 |       if(!client) { | ||
| 834 |         for(var i = 0; i < msg.extensions.length; ++i) { | ||
| 835 | var ext = msg.extensions[i]; | ||
| 836 | |||
| 837 | // support SNI extension | ||
| 838 |           if(ext.type[0] === 0x00 && ext.type[1] === 0x00) { | ||
| 839 | // get server name list | ||
| 840 | var snl = readVector(ext.data, 2); | ||
| 841 |             while(snl.length() > 0) { | ||
| 842 | // read server name type | ||
| 843 | var snType = snl.getByte(); | ||
| 844 | |||
| 845 | // only HostName type (0x00) is known, break out if | ||
| 846 | // another type is detected | ||
| 847 |               if(snType !== 0x00) { | ||
| 848 | break; | ||
| 849 | } | ||
| 850 | |||
| 851 | // add host name to server name list | ||
| 852 | c.session.extensions.server_name.serverNameList.push( | ||
| 853 | readVector(snl, 2).getBytes()); | ||
| 854 | } | ||
| 855 | } | ||
| 856 | } | ||
| 857 | } | ||
| 858 | } | ||
| 859 | |||
| 860 | // version already set, do not allow version change | ||
| 861 |     if(c.session.version) { | ||
| 862 | if(msg.version.major !== c.session.version.major || | ||
| 863 |         msg.version.minor !== c.session.version.minor) { | ||
| 864 |         return c.error(c, { | ||
| 865 | message: 'TLS version change is disallowed during renegotiation.', | ||
| 866 | send: true, | ||
| 867 |           alert: { | ||
| 868 | level: tls.Alert.Level.fatal, | ||
| 869 | description: tls.Alert.Description.protocol_version | ||
| 870 | } | ||
| 871 | }); | ||
| 872 | } | ||
| 873 | } | ||
| 874 | |||
| 875 | // get the chosen (ServerHello) cipher suite | ||
| 876 |     if(client) { | ||
| 877 | // FIXME: should be checking configured acceptable cipher suites | ||
| 878 | c.session.cipherSuite = tls.getCipherSuite(msg.cipher_suite); | ||
| 879 |     } else { | ||
| 880 | // get a supported preferred (ClientHello) cipher suite | ||
| 881 | // choose the first supported cipher suite | ||
| 882 | var tmp = forge.util.createBuffer(msg.cipher_suites.bytes()); | ||
| 883 |       while(tmp.length() > 0) { | ||
| 884 | // FIXME: should be checking configured acceptable suites | ||
| 885 | // cipher suites take up 2 bytes | ||
| 886 | c.session.cipherSuite = tls.getCipherSuite(tmp.getBytes(2)); | ||
| 887 |         if(c.session.cipherSuite !== null) { | ||
| 888 | break; | ||
| 889 | } | ||
| 890 | } | ||
| 891 | } | ||
| 892 | |||
| 893 | // cipher suite not supported | ||
| 894 |     if(c.session.cipherSuite === null) { | ||
| 895 |       return c.error(c, { | ||
| 896 | message: 'No cipher suites in common.', | ||
| 897 | send: true, | ||
| 898 |         alert: { | ||
| 899 | level: tls.Alert.Level.fatal, | ||
| 900 | description: tls.Alert.Description.handshake_failure | ||
| 901 | }, | ||
| 902 | cipherSuite: forge.util.bytesToHex(msg.cipher_suite) | ||
| 903 | }); | ||
| 904 | } | ||
| 905 | |||
| 906 | // TODO: handle compression methods | ||
| 907 |     if(client) { | ||
| 908 | c.session.compressionMethod = msg.compression_method; | ||
| 909 |     } else { | ||
| 910 | // no compression | ||
| 911 | c.session.compressionMethod = tls.CompressionMethod.none; | ||
| 912 | } | ||
| 913 | } | ||
| 914 | |||
| 915 | return msg; | ||
| 916 | }; | ||
| 917 | |||
| 918 | /** | ||
| 919 | * Creates security parameters for the given connection based on the given | ||
| 920 | * hello message. | ||
| 921 | * | ||
| 922 | * @param c the TLS connection. | ||
| 923 | * @param msg the hello message. | ||
| 924 | */ | ||
| 925 | tls.createSecurityParameters = function(c, msg) { | ||
| 926 | /* Note: security params are from TLS 1.2, some values like prf_algorithm | ||
| 927 | are ignored for TLS 1.0/1.1 and the builtin as specified in the spec is | ||
| 928 | used. */ | ||
| 929 | |||
| 930 | // TODO: handle other options from server when more supported | ||
| 931 | |||
| 932 | // get client and server randoms | ||
| 933 | var client = (c.entity === tls.ConnectionEnd.client); | ||
| 934 | var msgRandom = msg.random.bytes(); | ||
| 935 | var cRandom = client ? c.session.sp.client_random : msgRandom; | ||
| 936 | var sRandom = client ? msgRandom : tls.createRandom().getBytes(); | ||
| 937 | |||
| 938 | // create new security parameters | ||
| 939 |   c.session.sp = { | ||
| 940 | entity: c.entity, | ||
| 941 | prf_algorithm: tls.PRFAlgorithm.tls_prf_sha256, | ||
| 942 | bulk_cipher_algorithm: null, | ||
| 943 | cipher_type: null, | ||
| 944 | enc_key_length: null, | ||
| 945 | block_length: null, | ||
| 946 | fixed_iv_length: null, | ||
| 947 | record_iv_length: null, | ||
| 948 | mac_algorithm: null, | ||
| 949 | mac_length: null, | ||
| 950 | mac_key_length: null, | ||
| 951 | compression_algorithm: c.session.compressionMethod, | ||
| 952 | pre_master_secret: null, | ||
| 953 | master_secret: null, | ||
| 954 | client_random: cRandom, | ||
| 955 | server_random: sRandom | ||
| 956 | }; | ||
| 957 | }; | ||
| 958 | |||
| 959 | /** | ||
| 960 | * Called when a client receives a ServerHello record. | ||
| 961 | * | ||
| 962 | * When a ServerHello message will be sent: | ||
| 963 | * The server will send this message in response to a client hello message | ||
| 964 | * when it was able to find an acceptable set of algorithms. If it cannot | ||
| 965 | * find such a match, it will respond with a handshake failure alert. | ||
| 966 | * | ||
| 967 | * uint24 length; | ||
| 968 |  * struct { | ||
| 969 | * ProtocolVersion server_version; | ||
| 970 | * Random random; | ||
| 971 | * SessionID session_id; | ||
| 972 | * CipherSuite cipher_suite; | ||
| 973 | * CompressionMethod compression_method; | ||
| 974 |  *   select(extensions_present) { | ||
| 975 | * case false: | ||
| 976 |  *       struct {}; | ||
| 977 | * case true: | ||
| 978 | * Extension extensions<0..2^16-1>; | ||
| 979 | * }; | ||
| 980 | * } ServerHello; | ||
| 981 | * | ||
| 982 | * @param c the connection. | ||
| 983 | * @param record the record. | ||
| 984 | * @param length the length of the handshake message. | ||
| 985 | */ | ||
| 986 | tls.handleServerHello = function(c, record, length) { | ||
| 987 | var msg = tls.parseHelloMessage(c, record, length); | ||
| 988 |   if(c.fail) { | ||
| 989 | return; | ||
| 990 | } | ||
| 991 | |||
| 992 | // ensure server version is compatible | ||
| 993 |   if(msg.version.minor <= c.version.minor) { | ||
| 994 | c.version.minor = msg.version.minor; | ||
| 995 |   } else { | ||
| 996 |     return c.error(c, { | ||
| 997 | message: 'Incompatible TLS version.', | ||
| 998 | send: true, | ||
| 999 |       alert: { | ||
| 1000 | level: tls.Alert.Level.fatal, | ||
| 1001 | description: tls.Alert.Description.protocol_version | ||
| 1002 | } | ||
| 1003 | }); | ||
| 1004 | } | ||
| 1005 | |||
| 1006 | // indicate session version has been set | ||
| 1007 | c.session.version = c.version; | ||
| 1008 | |||
| 1009 | // get the session ID from the message | ||
| 1010 | var sessionId = msg.session_id.bytes(); | ||
| 1011 | |||
| 1012 | // if the session ID is not blank and matches the cached one, resume | ||
| 1013 | // the session | ||
| 1014 |   if(sessionId.length > 0 && sessionId === c.session.id) { | ||
| 1015 | // resuming session, expect a ChangeCipherSpec next | ||
| 1016 | c.expect = SCC; | ||
| 1017 | c.session.resuming = true; | ||
| 1018 | |||
| 1019 | // get new server random | ||
| 1020 | c.session.sp.server_random = msg.random.bytes(); | ||
| 1021 |   } else { | ||
| 1022 | // not resuming, expect a server Certificate message next | ||
| 1023 | c.expect = SCE; | ||
| 1024 | c.session.resuming = false; | ||
| 1025 | |||
| 1026 | // create new security parameters | ||
| 1027 | tls.createSecurityParameters(c, msg); | ||
| 1028 | } | ||
| 1029 | |||
| 1030 | // set new session ID | ||
| 1031 | c.session.id = sessionId; | ||
| 1032 | |||
| 1033 | // continue | ||
| 1034 | c.process(); | ||
| 1035 | }; | ||
| 1036 | |||
| 1037 | /** | ||
| 1038 | * Called when a server receives a ClientHello record. | ||
| 1039 | * | ||
| 1040 | * When a ClientHello message will be sent: | ||
| 1041 | * When a client first connects to a server it is required to send the | ||
| 1042 | * client hello as its first message. The client can also send a client | ||
| 1043 | * hello in response to a hello request or on its own initiative in order | ||
| 1044 | * to renegotiate the security parameters in an existing connection. | ||
| 1045 | * | ||
| 1046 | * @param c the connection. | ||
| 1047 | * @param record the record. | ||
| 1048 | * @param length the length of the handshake message. | ||
| 1049 | */ | ||
| 1050 | tls.handleClientHello = function(c, record, length) { | ||
| 1051 | var msg = tls.parseHelloMessage(c, record, length); | ||
| 1052 |   if(c.fail) { | ||
| 1053 | return; | ||
| 1054 | } | ||
| 1055 | |||
| 1056 | // get the session ID from the message | ||
| 1057 | var sessionId = msg.session_id.bytes(); | ||
| 1058 | |||
| 1059 | // see if the given session ID is in the cache | ||
| 1060 | var session = null; | ||
| 1061 |   if(c.sessionCache) { | ||
| 1062 | session = c.sessionCache.getSession(sessionId); | ||
| 1063 |     if(session === null) { | ||
| 1064 | // session ID not found | ||
| 1065 | sessionId = ''; | ||
| 1066 | } else if(session.version.major !== msg.version.major || | ||
| 1067 |       session.version.minor > msg.version.minor) { | ||
| 1068 | // if session version is incompatible with client version, do not resume | ||
| 1069 | session = null; | ||
| 1070 | sessionId = ''; | ||
| 1071 | } | ||
| 1072 | } | ||
| 1073 | |||
| 1074 | // no session found to resume, generate a new session ID | ||
| 1075 |   if(sessionId.length === 0) { | ||
| 1076 | sessionId = forge.random.getBytes(32); | ||
| 1077 | } | ||
| 1078 | |||
| 1079 | // update session | ||
| 1080 | c.session.id = sessionId; | ||
| 1081 | c.session.clientHelloVersion = msg.version; | ||
| 1082 |   c.session.sp = {}; | ||
| 1083 |   if(session) { | ||
| 1084 | // use version and security parameters from resumed session | ||
| 1085 | c.version = c.session.version = session.version; | ||
| 1086 | c.session.sp = session.sp; | ||
| 1087 |   } else { | ||
| 1088 | // use highest compatible minor version | ||
| 1089 | var version; | ||
| 1090 |     for(var i = 1; i < tls.SupportedVersions.length; ++i) { | ||
| 1091 | version = tls.SupportedVersions[i]; | ||
| 1092 |       if(version.minor <= msg.version.minor) { | ||
| 1093 | break; | ||
| 1094 | } | ||
| 1095 | } | ||
| 1096 |     c.version = {major: version.major, minor: version.minor}; | ||
| 1097 | c.session.version = c.version; | ||
| 1098 | } | ||
| 1099 | |||
| 1100 | // if a session is set, resume it | ||
| 1101 |   if(session !== null) { | ||
| 1102 | // resuming session, expect a ChangeCipherSpec next | ||
| 1103 | c.expect = CCC; | ||
| 1104 | c.session.resuming = true; | ||
| 1105 | |||
| 1106 | // get new client random | ||
| 1107 | c.session.sp.client_random = msg.random.bytes(); | ||
| 1108 |   } else { | ||
| 1109 | // not resuming, expect a Certificate or ClientKeyExchange | ||
| 1110 | c.expect = (c.verifyClient !== false) ? CCE : CKE; | ||
| 1111 | c.session.resuming = false; | ||
| 1112 | |||
| 1113 | // create new security parameters | ||
| 1114 | tls.createSecurityParameters(c, msg); | ||
| 1115 | } | ||
| 1116 | |||
| 1117 | // connection now open | ||
| 1118 | c.open = true; | ||
| 1119 | |||
| 1120 | // queue server hello | ||
| 1121 |   tls.queue(c, tls.createRecord(c, { | ||
| 1122 | type: tls.ContentType.handshake, | ||
| 1123 | data: tls.createServerHello(c) | ||
| 1124 | })); | ||
| 1125 | |||
| 1126 |   if(c.session.resuming) { | ||
| 1127 | // queue change cipher spec message | ||
| 1128 |     tls.queue(c, tls.createRecord(c, { | ||
| 1129 | type: tls.ContentType.change_cipher_spec, | ||
| 1130 | data: tls.createChangeCipherSpec() | ||
| 1131 | })); | ||
| 1132 | |||
| 1133 | // create pending state | ||
| 1134 | c.state.pending = tls.createConnectionState(c); | ||
| 1135 | |||
| 1136 | // change current write state to pending write state | ||
| 1137 | c.state.current.write = c.state.pending.write; | ||
| 1138 | |||
| 1139 | // queue finished | ||
| 1140 |     tls.queue(c, tls.createRecord(c, { | ||
| 1141 | type: tls.ContentType.handshake, | ||
| 1142 | data: tls.createFinished(c) | ||
| 1143 | })); | ||
| 1144 |   } else { | ||
| 1145 | // queue server certificate | ||
| 1146 |     tls.queue(c, tls.createRecord(c, { | ||
| 1147 | type: tls.ContentType.handshake, | ||
| 1148 | data: tls.createCertificate(c) | ||
| 1149 | })); | ||
| 1150 | |||
| 1151 |     if(!c.fail) { | ||
| 1152 | // queue server key exchange | ||
| 1153 |       tls.queue(c, tls.createRecord(c, { | ||
| 1154 | type: tls.ContentType.handshake, | ||
| 1155 | data: tls.createServerKeyExchange(c) | ||
| 1156 | })); | ||
| 1157 | |||
| 1158 | // request client certificate if set | ||
| 1159 |       if(c.verifyClient !== false) { | ||
| 1160 | // queue certificate request | ||
| 1161 |         tls.queue(c, tls.createRecord(c, { | ||
| 1162 | type: tls.ContentType.handshake, | ||
| 1163 | data: tls.createCertificateRequest(c) | ||
| 1164 | })); | ||
| 1165 | } | ||
| 1166 | |||
| 1167 | // queue server hello done | ||
| 1168 |       tls.queue(c, tls.createRecord(c, { | ||
| 1169 | type: tls.ContentType.handshake, | ||
| 1170 | data: tls.createServerHelloDone(c) | ||
| 1171 | })); | ||
| 1172 | } | ||
| 1173 | } | ||
| 1174 | |||
| 1175 | // send records | ||
| 1176 | tls.flush(c); | ||
| 1177 | |||
| 1178 | // continue | ||
| 1179 | c.process(); | ||
| 1180 | }; | ||
| 1181 | |||
| 1182 | /** | ||
| 1183 | * Called when a client receives a Certificate record. | ||
| 1184 | * | ||
| 1185 | * When this message will be sent: | ||
| 1186 | * The server must send a certificate whenever the agreed-upon key exchange | ||
| 1187 | * method is not an anonymous one. This message will always immediately | ||
| 1188 | * follow the server hello message. | ||
| 1189 | * | ||
| 1190 | * Meaning of this message: | ||
| 1191 | * The certificate type must be appropriate for the selected cipher suite's | ||
| 1192 | * key exchange algorithm, and is generally an X.509v3 certificate. It must | ||
| 1193 | * contain a key which matches the key exchange method, as follows. Unless | ||
| 1194 | * otherwise specified, the signing algorithm for the certificate must be | ||
| 1195 | * the same as the algorithm for the certificate key. Unless otherwise | ||
| 1196 | * specified, the public key may be of any length. | ||
| 1197 | * | ||
| 1198 | * opaque ASN.1Cert<1..2^24-1>; | ||
| 1199 |  * struct { | ||
| 1200 | * ASN.1Cert certificate_list<1..2^24-1>; | ||
| 1201 | * } Certificate; | ||
| 1202 | * | ||
| 1203 | * @param c the connection. | ||
| 1204 | * @param record the record. | ||
| 1205 | * @param length the length of the handshake message. | ||
| 1206 | */ | ||
| 1207 | tls.handleCertificate = function(c, record, length) { | ||
| 1208 | // minimum of 3 bytes in message | ||
| 1209 |   if(length < 3) { | ||
| 1210 |     return c.error(c, { | ||
| 1211 | message: 'Invalid Certificate message. Message too short.', | ||
| 1212 | send: true, | ||
| 1213 |       alert: { | ||
| 1214 | level: tls.Alert.Level.fatal, | ||
| 1215 | description: tls.Alert.Description.illegal_parameter | ||
| 1216 | } | ||
| 1217 | }); | ||
| 1218 | } | ||
| 1219 | |||
| 1220 | var b = record.fragment; | ||
| 1221 |   var msg = { | ||
| 1222 | certificate_list: readVector(b, 3) | ||
| 1223 | }; | ||
| 1224 | |||
| 1225 | /* The sender's certificate will be first in the list (chain), each | ||
| 1226 | subsequent one that follows will certify the previous one, but root | ||
| 1227 | certificates (self-signed) that specify the certificate authority may | ||
| 1228 | be omitted under the assumption that clients must already possess it. */ | ||
| 1229 | var cert, asn1; | ||
| 1230 | var certs = []; | ||
| 1231 |   try { | ||
| 1232 |     while(msg.certificate_list.length() > 0) { | ||
| 1233 | // each entry in msg.certificate_list is a vector with 3 len bytes | ||
| 1234 | cert = readVector(msg.certificate_list, 3); | ||
| 1235 | asn1 = forge.asn1.fromDer(cert); | ||
| 1236 | cert = forge.pki.certificateFromAsn1(asn1, true); | ||
| 1237 | certs.push(cert); | ||
| 1238 | } | ||
| 1239 |   } catch(ex) { | ||
| 1240 |     return c.error(c, { | ||
| 1241 | message: 'Could not parse certificate list.', | ||
| 1242 | cause: ex, | ||
| 1243 | send: true, | ||
| 1244 |       alert: { | ||
| 1245 | level: tls.Alert.Level.fatal, | ||
| 1246 | description: tls.Alert.Description.bad_certificate | ||
| 1247 | } | ||
| 1248 | }); | ||
| 1249 | } | ||
| 1250 | |||
| 1251 | // ensure at least 1 certificate was provided if in client-mode | ||
| 1252 | // or if verifyClient was set to true to require a certificate | ||
| 1253 | // (as opposed to 'optional') | ||
| 1254 | var client = (c.entity === tls.ConnectionEnd.client); | ||
| 1255 |   if((client || c.verifyClient === true) && certs.length === 0) { | ||
| 1256 | // error, no certificate | ||
| 1257 |     c.error(c, { | ||
| 1258 | message: client ? | ||
| 1259 | 'No server certificate provided.' : | ||
| 1260 | 'No client certificate provided.', | ||
| 1261 | send: true, | ||
| 1262 |       alert: { | ||
| 1263 | level: tls.Alert.Level.fatal, | ||
| 1264 | description: tls.Alert.Description.illegal_parameter | ||
| 1265 | } | ||
| 1266 | }); | ||
| 1267 |   } else if(certs.length === 0) { | ||
| 1268 | // no certs to verify | ||
| 1269 | // expect a ServerKeyExchange or ClientKeyExchange message next | ||
| 1270 | c.expect = client ? SKE : CKE; | ||
| 1271 |   } else { | ||
| 1272 | // save certificate in session | ||
| 1273 |     if(client) { | ||
| 1274 | c.session.serverCertificate = certs[0]; | ||
| 1275 |     } else { | ||
| 1276 | c.session.clientCertificate = certs[0]; | ||
| 1277 | } | ||
| 1278 | |||
| 1279 |     if(tls.verifyCertificateChain(c, certs)) { | ||
| 1280 | // expect a ServerKeyExchange or ClientKeyExchange message next | ||
| 1281 | c.expect = client ? SKE : CKE; | ||
| 1282 | } | ||
| 1283 | } | ||
| 1284 | |||
| 1285 | // continue | ||
| 1286 | c.process(); | ||
| 1287 | }; | ||
| 1288 | |||
| 1289 | /** | ||
| 1290 | * Called when a client receives a ServerKeyExchange record. | ||
| 1291 | * | ||
| 1292 | * When this message will be sent: | ||
| 1293 | * This message will be sent immediately after the server certificate | ||
| 1294 | * message (or the server hello message, if this is an anonymous | ||
| 1295 | * negotiation). | ||
| 1296 | * | ||
| 1297 | * The server key exchange message is sent by the server only when the | ||
| 1298 | * server certificate message (if sent) does not contain enough data to | ||
| 1299 | * allow the client to exchange a premaster secret. | ||
| 1300 | * | ||
| 1301 | * Meaning of this message: | ||
| 1302 | * This message conveys cryptographic information to allow the client to | ||
| 1303 | * communicate the premaster secret: either an RSA public key to encrypt | ||
| 1304 | * the premaster secret with, or a Diffie-Hellman public key with which the | ||
| 1305 | * client can complete a key exchange (with the result being the premaster | ||
| 1306 | * secret.) | ||
| 1307 | * | ||
| 1308 |  * enum { | ||
| 1309 | * dhe_dss, dhe_rsa, dh_anon, rsa, dh_dss, dh_rsa | ||
| 1310 | * } KeyExchangeAlgorithm; | ||
| 1311 | * | ||
| 1312 |  * struct { | ||
| 1313 | * opaque dh_p<1..2^16-1>; | ||
| 1314 | * opaque dh_g<1..2^16-1>; | ||
| 1315 | * opaque dh_Ys<1..2^16-1>; | ||
| 1316 | * } ServerDHParams; | ||
| 1317 | * | ||
| 1318 |  * struct { | ||
| 1319 |  *   select(KeyExchangeAlgorithm) { | ||
| 1320 | * case dh_anon: | ||
| 1321 | * ServerDHParams params; | ||
| 1322 | * case dhe_dss: | ||
| 1323 | * case dhe_rsa: | ||
| 1324 | * ServerDHParams params; | ||
| 1325 |  *       digitally-signed struct { | ||
| 1326 | * opaque client_random[32]; | ||
| 1327 | * opaque server_random[32]; | ||
| 1328 | * ServerDHParams params; | ||
| 1329 | * } signed_params; | ||
| 1330 | * case rsa: | ||
| 1331 | * case dh_dss: | ||
| 1332 | * case dh_rsa: | ||
| 1333 |  *       struct {}; | ||
| 1334 | * }; | ||
| 1335 | * } ServerKeyExchange; | ||
| 1336 | * | ||
| 1337 | * @param c the connection. | ||
| 1338 | * @param record the record. | ||
| 1339 | * @param length the length of the handshake message. | ||
| 1340 | */ | ||
| 1341 | tls.handleServerKeyExchange = function(c, record, length) { | ||
| 1342 | // this implementation only supports RSA, no Diffie-Hellman support | ||
| 1343 | // so any length > 0 is invalid | ||
| 1344 |   if(length > 0) { | ||
| 1345 |     return c.error(c, { | ||
| 1346 | message: 'Invalid key parameters. Only RSA is supported.', | ||
| 1347 | send: true, | ||
| 1348 |       alert: { | ||
| 1349 | level: tls.Alert.Level.fatal, | ||
| 1350 | description: tls.Alert.Description.unsupported_certificate | ||
| 1351 | } | ||
| 1352 | }); | ||
| 1353 | } | ||
| 1354 | |||
| 1355 | // expect an optional CertificateRequest message next | ||
| 1356 | c.expect = SCR; | ||
| 1357 | |||
| 1358 | // continue | ||
| 1359 | c.process(); | ||
| 1360 | }; | ||
| 1361 | |||
| 1362 | /** | ||
| 1363 | * Called when a client receives a ClientKeyExchange record. | ||
| 1364 | * | ||
| 1365 | * @param c the connection. | ||
| 1366 | * @param record the record. | ||
| 1367 | * @param length the length of the handshake message. | ||
| 1368 | */ | ||
| 1369 | tls.handleClientKeyExchange = function(c, record, length) { | ||
| 1370 | // this implementation only supports RSA, no Diffie-Hellman support | ||
| 1371 | // so any length < 48 is invalid | ||
| 1372 |   if(length < 48) { | ||
| 1373 |     return c.error(c, { | ||
| 1374 | message: 'Invalid key parameters. Only RSA is supported.', | ||
| 1375 | send: true, | ||
| 1376 |       alert: { | ||
| 1377 | level: tls.Alert.Level.fatal, | ||
| 1378 | description: tls.Alert.Description.unsupported_certificate | ||
| 1379 | } | ||
| 1380 | }); | ||
| 1381 | } | ||
| 1382 | |||
| 1383 | var b = record.fragment; | ||
| 1384 |   var msg = { | ||
| 1385 | enc_pre_master_secret: readVector(b, 2).getBytes() | ||
| 1386 | }; | ||
| 1387 | |||
| 1388 | // do rsa decryption | ||
| 1389 | var privateKey = null; | ||
| 1390 |   if(c.getPrivateKey) { | ||
| 1391 |     try { | ||
| 1392 | privateKey = c.getPrivateKey(c, c.session.serverCertificate); | ||
| 1393 | privateKey = forge.pki.privateKeyFromPem(privateKey); | ||
| 1394 |     } catch(ex) { | ||
| 1395 |       c.error(c, { | ||
| 1396 | message: 'Could not get private key.', | ||
| 1397 | cause: ex, | ||
| 1398 | send: true, | ||
| 1399 |         alert: { | ||
| 1400 | level: tls.Alert.Level.fatal, | ||
| 1401 | description: tls.Alert.Description.internal_error | ||
| 1402 | } | ||
| 1403 | }); | ||
| 1404 | } | ||
| 1405 | } | ||
| 1406 | |||
| 1407 |   if(privateKey === null) { | ||
| 1408 |     return c.error(c, { | ||
| 1409 | message: 'No private key set.', | ||
| 1410 | send: true, | ||
| 1411 |       alert: { | ||
| 1412 | level: tls.Alert.Level.fatal, | ||
| 1413 | description: tls.Alert.Description.internal_error | ||
| 1414 | } | ||
| 1415 | }); | ||
| 1416 | } | ||
| 1417 | |||
| 1418 |   try { | ||
| 1419 | // decrypt 48-byte pre-master secret | ||
| 1420 | var sp = c.session.sp; | ||
| 1421 | sp.pre_master_secret = privateKey.decrypt(msg.enc_pre_master_secret); | ||
| 1422 | |||
| 1423 | // ensure client hello version matches first 2 bytes | ||
| 1424 | var version = c.session.clientHelloVersion; | ||
| 1425 | if(version.major !== sp.pre_master_secret.charCodeAt(0) || | ||
| 1426 |       version.minor !== sp.pre_master_secret.charCodeAt(1)) { | ||
| 1427 | // error, do not send alert (see BLEI attack below) | ||
| 1428 |       throw new Error('TLS version rollback attack detected.'); | ||
| 1429 | } | ||
| 1430 |   } catch(ex) { | ||
| 1431 | /* Note: Daniel Bleichenbacher [BLEI] can be used to attack a | ||
| 1432 | TLS server which is using PKCS#1 encoded RSA, so instead of | ||
| 1433 | failing here, we generate 48 random bytes and use that as | ||
| 1434 | the pre-master secret. */ | ||
| 1435 | sp.pre_master_secret = forge.random.getBytes(48); | ||
| 1436 | } | ||
| 1437 | |||
| 1438 | // expect a CertificateVerify message if a Certificate was received that | ||
| 1439 | // does not have fixed Diffie-Hellman params, otherwise expect | ||
| 1440 | // ChangeCipherSpec | ||
| 1441 | c.expect = CCC; | ||
| 1442 |   if(c.session.clientCertificate !== null) { | ||
| 1443 | // only RSA support, so expect CertificateVerify | ||
| 1444 | // TODO: support Diffie-Hellman | ||
| 1445 | c.expect = CCV; | ||
| 1446 | } | ||
| 1447 | |||
| 1448 | // continue | ||
| 1449 | c.process(); | ||
| 1450 | }; | ||
| 1451 | |||
| 1452 | /** | ||
| 1453 | * Called when a client receives a CertificateRequest record. | ||
| 1454 | * | ||
| 1455 | * When this message will be sent: | ||
| 1456 | * A non-anonymous server can optionally request a certificate from the | ||
| 1457 | * client, if appropriate for the selected cipher suite. This message, if | ||
| 1458 | * sent, will immediately follow the Server Key Exchange message (if it is | ||
| 1459 | * sent; otherwise, the Server Certificate message). | ||
| 1460 | * | ||
| 1461 |  * enum { | ||
| 1462 | * rsa_sign(1), dss_sign(2), rsa_fixed_dh(3), dss_fixed_dh(4), | ||
| 1463 | * rsa_ephemeral_dh_RESERVED(5), dss_ephemeral_dh_RESERVED(6), | ||
| 1464 | * fortezza_dms_RESERVED(20), (255) | ||
| 1465 | * } ClientCertificateType; | ||
| 1466 | * | ||
| 1467 | * opaque DistinguishedName<1..2^16-1>; | ||
| 1468 | * | ||
| 1469 |  * struct { | ||
| 1470 | * ClientCertificateType certificate_types<1..2^8-1>; | ||
| 1471 | * SignatureAndHashAlgorithm supported_signature_algorithms<2^16-1>; | ||
| 1472 | * DistinguishedName certificate_authorities<0..2^16-1>; | ||
| 1473 | * } CertificateRequest; | ||
| 1474 | * | ||
| 1475 | * @param c the connection. | ||
| 1476 | * @param record the record. | ||
| 1477 | * @param length the length of the handshake message. | ||
| 1478 | */ | ||
| 1479 | tls.handleCertificateRequest = function(c, record, length) { | ||
| 1480 | // minimum of 3 bytes in message | ||
| 1481 |   if(length < 3) { | ||
| 1482 |     return c.error(c, { | ||
| 1483 | message: 'Invalid CertificateRequest. Message too short.', | ||
| 1484 | send: true, | ||
| 1485 |       alert: { | ||
| 1486 | level: tls.Alert.Level.fatal, | ||
| 1487 | description: tls.Alert.Description.illegal_parameter | ||
| 1488 | } | ||
| 1489 | }); | ||
| 1490 | } | ||
| 1491 | |||
| 1492 | // TODO: TLS 1.2+ has different format including | ||
| 1493 | // SignatureAndHashAlgorithm after cert types | ||
| 1494 | var b = record.fragment; | ||
| 1495 |   var msg = { | ||
| 1496 | certificate_types: readVector(b, 1), | ||
| 1497 | certificate_authorities: readVector(b, 2) | ||
| 1498 | }; | ||
| 1499 | |||
| 1500 | // save certificate request in session | ||
| 1501 | c.session.certificateRequest = msg; | ||
| 1502 | |||
| 1503 | // expect a ServerHelloDone message next | ||
| 1504 | c.expect = SHD; | ||
| 1505 | |||
| 1506 | // continue | ||
| 1507 | c.process(); | ||
| 1508 | }; | ||
| 1509 | |||
| 1510 | /** | ||
| 1511 | * Called when a server receives a CertificateVerify record. | ||
| 1512 | * | ||
| 1513 | * @param c the connection. | ||
| 1514 | * @param record the record. | ||
| 1515 | * @param length the length of the handshake message. | ||
| 1516 | */ | ||
| 1517 | tls.handleCertificateVerify = function(c, record, length) { | ||
| 1518 |   if(length < 2) { | ||
| 1519 |     return c.error(c, { | ||
| 1520 | message: 'Invalid CertificateVerify. Message too short.', | ||
| 1521 | send: true, | ||
| 1522 |       alert: { | ||
| 1523 | level: tls.Alert.Level.fatal, | ||
| 1524 | description: tls.Alert.Description.illegal_parameter | ||
| 1525 | } | ||
| 1526 | }); | ||
| 1527 | } | ||
| 1528 | |||
| 1529 | // rewind to get full bytes for message so it can be manually | ||
| 1530 | // digested below (special case for CertificateVerify messages because | ||
| 1531 | // they must be digested *after* handling as opposed to all others) | ||
| 1532 | var b = record.fragment; | ||
| 1533 | b.read -= 4; | ||
| 1534 | var msgBytes = b.bytes(); | ||
| 1535 | b.read += 4; | ||
| 1536 | |||
| 1537 |   var msg = { | ||
| 1538 | signature: readVector(b, 2).getBytes() | ||
| 1539 | }; | ||
| 1540 | |||
| 1541 | // TODO: add support for DSA | ||
| 1542 | |||
| 1543 | // generate data to verify | ||
| 1544 | var verify = forge.util.createBuffer(); | ||
| 1545 | verify.putBuffer(c.session.md5.digest()); | ||
| 1546 | verify.putBuffer(c.session.sha1.digest()); | ||
| 1547 | verify = verify.getBytes(); | ||
| 1548 | |||
| 1549 |   try { | ||
| 1550 | var cert = c.session.clientCertificate; | ||
| 1551 | /*b = forge.pki.rsa.decrypt( | ||
| 1552 | msg.signature, cert.publicKey, true, verify.length); | ||
| 1553 |     if(b !== verify) {*/ | ||
| 1554 |     if(!cert.publicKey.verify(verify, msg.signature, 'NONE')) { | ||
| 1555 |       throw new Error('CertificateVerify signature does not match.'); | ||
| 1556 | } | ||
| 1557 | |||
| 1558 | // digest message now that it has been handled | ||
| 1559 | c.session.md5.update(msgBytes); | ||
| 1560 | c.session.sha1.update(msgBytes); | ||
| 1561 |   } catch(ex) { | ||
| 1562 |     return c.error(c, { | ||
| 1563 | message: 'Bad signature in CertificateVerify.', | ||
| 1564 | send: true, | ||
| 1565 |       alert: { | ||
| 1566 | level: tls.Alert.Level.fatal, | ||
| 1567 | description: tls.Alert.Description.handshake_failure | ||
| 1568 | } | ||
| 1569 | }); | ||
| 1570 | } | ||
| 1571 | |||
| 1572 | // expect ChangeCipherSpec | ||
| 1573 | c.expect = CCC; | ||
| 1574 | |||
| 1575 | // continue | ||
| 1576 | c.process(); | ||
| 1577 | }; | ||
| 1578 | |||
| 1579 | /** | ||
| 1580 | * Called when a client receives a ServerHelloDone record. | ||
| 1581 | * | ||
| 1582 | * When this message will be sent: | ||
| 1583 | * The server hello done message is sent by the server to indicate the end | ||
| 1584 | * of the server hello and associated messages. After sending this message | ||
| 1585 | * the server will wait for a client response. | ||
| 1586 | * | ||
| 1587 | * Meaning of this message: | ||
| 1588 | * This message means that the server is done sending messages to support | ||
| 1589 | * the key exchange, and the client can proceed with its phase of the key | ||
| 1590 | * exchange. | ||
| 1591 | * | ||
| 1592 | * Upon receipt of the server hello done message the client should verify | ||
| 1593 | * that the server provided a valid certificate if required and check that | ||
| 1594 | * the server hello parameters are acceptable. | ||
| 1595 | * | ||
| 1596 |  * struct {} ServerHelloDone; | ||
| 1597 | * | ||
| 1598 | * @param c the connection. | ||
| 1599 | * @param record the record. | ||
| 1600 | * @param length the length of the handshake message. | ||
| 1601 | */ | ||
| 1602 | tls.handleServerHelloDone = function(c, record, length) { | ||
| 1603 | // len must be 0 bytes | ||
| 1604 |   if(length > 0) { | ||
| 1605 |     return c.error(c, { | ||
| 1606 | message: 'Invalid ServerHelloDone message. Invalid length.', | ||
| 1607 | send: true, | ||
| 1608 |       alert: { | ||
| 1609 | level: tls.Alert.Level.fatal, | ||
| 1610 | description: tls.Alert.Description.record_overflow | ||
| 1611 | } | ||
| 1612 | }); | ||
| 1613 | } | ||
| 1614 | |||
| 1615 |   if(c.serverCertificate === null) { | ||
| 1616 | // no server certificate was provided | ||
| 1617 |     var error = { | ||
| 1618 | message: 'No server certificate provided. Not enough security.', | ||
| 1619 | send: true, | ||
| 1620 |       alert: { | ||
| 1621 | level: tls.Alert.Level.fatal, | ||
| 1622 | description: tls.Alert.Description.insufficient_security | ||
| 1623 | } | ||
| 1624 | }; | ||
| 1625 | |||
| 1626 | // call application callback | ||
| 1627 | var depth = 0; | ||
| 1628 | var ret = c.verify(c, error.alert.description, depth, []); | ||
| 1629 |     if(ret !== true) { | ||
| 1630 | // check for custom alert info | ||
| 1631 |       if(ret || ret === 0) { | ||
| 1632 | // set custom message and alert description | ||
| 1633 |         if(typeof ret === 'object' && !forge.util.isArray(ret)) { | ||
| 1634 |           if(ret.message) { | ||
| 1635 | error.message = ret.message; | ||
| 1636 | } | ||
| 1637 |           if(ret.alert) { | ||
| 1638 | error.alert.description = ret.alert; | ||
| 1639 | } | ||
| 1640 |         } else if(typeof ret === 'number') { | ||
| 1641 | // set custom alert description | ||
| 1642 | error.alert.description = ret; | ||
| 1643 | } | ||
| 1644 | } | ||
| 1645 | |||
| 1646 | // send error | ||
| 1647 | return c.error(c, error); | ||
| 1648 | } | ||
| 1649 | } | ||
| 1650 | |||
| 1651 | // create client certificate message if requested | ||
| 1652 |   if(c.session.certificateRequest !== null) { | ||
| 1653 |     record = tls.createRecord(c, { | ||
| 1654 | type: tls.ContentType.handshake, | ||
| 1655 | data: tls.createCertificate(c) | ||
| 1656 | }); | ||
| 1657 | tls.queue(c, record); | ||
| 1658 | } | ||
| 1659 | |||
| 1660 | // create client key exchange message | ||
| 1661 |   record = tls.createRecord(c, { | ||
| 1662 | type: tls.ContentType.handshake, | ||
| 1663 | data: tls.createClientKeyExchange(c) | ||
| 1664 | }); | ||
| 1665 | tls.queue(c, record); | ||
| 1666 | |||
| 1667 | // expect no messages until the following callback has been called | ||
| 1668 | c.expect = SER; | ||
| 1669 | |||
| 1670 | // create callback to handle client signature (for client-certs) | ||
| 1671 |   var callback = function(c, signature) { | ||
| 1672 | if(c.session.certificateRequest !== null && | ||
| 1673 |       c.session.clientCertificate !== null) { | ||
| 1674 | // create certificate verify message | ||
| 1675 |       tls.queue(c, tls.createRecord(c, { | ||
| 1676 | type: tls.ContentType.handshake, | ||
| 1677 | data: tls.createCertificateVerify(c, signature) | ||
| 1678 | })); | ||
| 1679 | } | ||
| 1680 | |||
| 1681 | // create change cipher spec message | ||
| 1682 |     tls.queue(c, tls.createRecord(c, { | ||
| 1683 | type: tls.ContentType.change_cipher_spec, | ||
| 1684 | data: tls.createChangeCipherSpec() | ||
| 1685 | })); | ||
| 1686 | |||
| 1687 | // create pending state | ||
| 1688 | c.state.pending = tls.createConnectionState(c); | ||
| 1689 | |||
| 1690 | // change current write state to pending write state | ||
| 1691 | c.state.current.write = c.state.pending.write; | ||
| 1692 | |||
| 1693 | // create finished message | ||
| 1694 |     tls.queue(c, tls.createRecord(c, { | ||
| 1695 | type: tls.ContentType.handshake, | ||
| 1696 | data: tls.createFinished(c) | ||
| 1697 | })); | ||
| 1698 | |||
| 1699 | // expect a server ChangeCipherSpec message next | ||
| 1700 | c.expect = SCC; | ||
| 1701 | |||
| 1702 | // send records | ||
| 1703 | tls.flush(c); | ||
| 1704 | |||
| 1705 | // continue | ||
| 1706 | c.process(); | ||
| 1707 | }; | ||
| 1708 | |||
| 1709 | // if there is no certificate request or no client certificate, do | ||
| 1710 | // callback immediately | ||
| 1711 | if(c.session.certificateRequest === null || | ||
| 1712 |     c.session.clientCertificate === null) { | ||
| 1713 | return callback(c, null); | ||
| 1714 | } | ||
| 1715 | |||
| 1716 | // otherwise get the client signature | ||
| 1717 | tls.getClientSignature(c, callback); | ||
| 1718 | }; | ||
| 1719 | |||
| 1720 | /** | ||
| 1721 | * Called when a ChangeCipherSpec record is received. | ||
| 1722 | * | ||
| 1723 | * @param c the connection. | ||
| 1724 | * @param record the record. | ||
| 1725 | */ | ||
| 1726 | tls.handleChangeCipherSpec = function(c, record) { | ||
| 1727 |   if(record.fragment.getByte() !== 0x01) { | ||
| 1728 |     return c.error(c, { | ||
| 1729 | message: 'Invalid ChangeCipherSpec message received.', | ||
| 1730 | send: true, | ||
| 1731 |       alert: { | ||
| 1732 | level: tls.Alert.Level.fatal, | ||
| 1733 | description: tls.Alert.Description.illegal_parameter | ||
| 1734 | } | ||
| 1735 | }); | ||
| 1736 | } | ||
| 1737 | |||
| 1738 | // create pending state if: | ||
| 1739 | // 1. Resuming session in client mode OR | ||
| 1740 | // 2. NOT resuming session in server mode | ||
| 1741 | var client = (c.entity === tls.ConnectionEnd.client); | ||
| 1742 |   if((c.session.resuming && client) || (!c.session.resuming && !client)) { | ||
| 1743 | c.state.pending = tls.createConnectionState(c); | ||
| 1744 | } | ||
| 1745 | |||
| 1746 | // change current read state to pending read state | ||
| 1747 | c.state.current.read = c.state.pending.read; | ||
| 1748 | |||
| 1749 | // clear pending state if: | ||
| 1750 | // 1. NOT resuming session in client mode OR | ||
| 1751 | // 2. resuming a session in server mode | ||
| 1752 |   if((!c.session.resuming && client) || (c.session.resuming && !client)) { | ||
| 1753 | c.state.pending = null; | ||
| 1754 | } | ||
| 1755 | |||
| 1756 | // expect a Finished record next | ||
| 1757 | c.expect = client ? SFI : CFI; | ||
| 1758 | |||
| 1759 | // continue | ||
| 1760 | c.process(); | ||
| 1761 | }; | ||
| 1762 | |||
| 1763 | /** | ||
| 1764 | * Called when a Finished record is received. | ||
| 1765 | * | ||
| 1766 | * When this message will be sent: | ||
| 1767 | * A finished message is always sent immediately after a change | ||
| 1768 | * cipher spec message to verify that the key exchange and | ||
| 1769 | * authentication processes were successful. It is essential that a | ||
| 1770 | * change cipher spec message be received between the other | ||
| 1771 | * handshake messages and the Finished message. | ||
| 1772 | * | ||
| 1773 | * Meaning of this message: | ||
| 1774 | * The finished message is the first protected with the just- | ||
| 1775 | * negotiated algorithms, keys, and secrets. Recipients of finished | ||
| 1776 | * messages must verify that the contents are correct. Once a side | ||
| 1777 | * has sent its Finished message and received and validated the | ||
| 1778 | * Finished message from its peer, it may begin to send and receive | ||
| 1779 | * application data over the connection. | ||
| 1780 | * | ||
| 1781 |  * struct { | ||
| 1782 | * opaque verify_data[verify_data_length]; | ||
| 1783 | * } Finished; | ||
| 1784 | * | ||
| 1785 | * verify_data | ||
| 1786 | * PRF(master_secret, finished_label, Hash(handshake_messages)) | ||
| 1787 | * [0..verify_data_length-1]; | ||
| 1788 | * | ||
| 1789 | * finished_label | ||
| 1790 | * For Finished messages sent by the client, the string | ||
| 1791 | * "client finished". For Finished messages sent by the server, the | ||
| 1792 | * string "server finished". | ||
| 1793 | * | ||
| 1794 | * verify_data_length depends on the cipher suite. If it is not specified | ||
| 1795 | * by the cipher suite, then it is 12. Versions of TLS < 1.2 always used | ||
| 1796 | * 12 bytes. | ||
| 1797 | * | ||
| 1798 | * @param c the connection. | ||
| 1799 | * @param record the record. | ||
| 1800 | * @param length the length of the handshake message. | ||
| 1801 | */ | ||
| 1802 | tls.handleFinished = function(c, record, length) { | ||
| 1803 | // rewind to get full bytes for message so it can be manually | ||
| 1804 | // digested below (special case for Finished messages because they | ||
| 1805 | // must be digested *after* handling as opposed to all others) | ||
| 1806 | var b = record.fragment; | ||
| 1807 | b.read -= 4; | ||
| 1808 | var msgBytes = b.bytes(); | ||
| 1809 | b.read += 4; | ||
| 1810 | |||
| 1811 | // message contains only verify_data | ||
| 1812 | var vd = record.fragment.getBytes(); | ||
| 1813 | |||
| 1814 | // ensure verify data is correct | ||
| 1815 | b = forge.util.createBuffer(); | ||
| 1816 | b.putBuffer(c.session.md5.digest()); | ||
| 1817 | b.putBuffer(c.session.sha1.digest()); | ||
| 1818 | |||
| 1819 | // set label based on entity type | ||
| 1820 | var client = (c.entity === tls.ConnectionEnd.client); | ||
| 1821 | var label = client ? 'server finished' : 'client finished'; | ||
| 1822 | |||
| 1823 | // TODO: determine prf function and verify length for TLS 1.2 | ||
| 1824 | var sp = c.session.sp; | ||
| 1825 | var vdl = 12; | ||
| 1826 | var prf = prf_TLS1; | ||
| 1827 | b = prf(sp.master_secret, label, b.getBytes(), vdl); | ||
| 1828 |   if(b.getBytes() !== vd) { | ||
| 1829 |     return c.error(c, { | ||
| 1830 | message: 'Invalid verify_data in Finished message.', | ||
| 1831 | send: true, | ||
| 1832 |       alert: { | ||
| 1833 | level: tls.Alert.Level.fatal, | ||
| 1834 | description: tls.Alert.Description.decrypt_error | ||
| 1835 | } | ||
| 1836 | }); | ||
| 1837 | } | ||
| 1838 | |||
| 1839 | // digest finished message now that it has been handled | ||
| 1840 | c.session.md5.update(msgBytes); | ||
| 1841 | c.session.sha1.update(msgBytes); | ||
| 1842 | |||
| 1843 | // resuming session as client or NOT resuming session as server | ||
| 1844 |   if((c.session.resuming && client) || (!c.session.resuming && !client)) { | ||
| 1845 | // create change cipher spec message | ||
| 1846 |     tls.queue(c, tls.createRecord(c, { | ||
| 1847 | type: tls.ContentType.change_cipher_spec, | ||
| 1848 | data: tls.createChangeCipherSpec() | ||
| 1849 | })); | ||
| 1850 | |||
| 1851 | // change current write state to pending write state, clear pending | ||
| 1852 | c.state.current.write = c.state.pending.write; | ||
| 1853 | c.state.pending = null; | ||
| 1854 | |||
| 1855 | // create finished message | ||
| 1856 |     tls.queue(c, tls.createRecord(c, { | ||
| 1857 | type: tls.ContentType.handshake, | ||
| 1858 | data: tls.createFinished(c) | ||
| 1859 | })); | ||
| 1860 | } | ||
| 1861 | |||
| 1862 | // expect application data next | ||
| 1863 | c.expect = client ? SAD : CAD; | ||
| 1864 | |||
| 1865 | // handshake complete | ||
| 1866 | c.handshaking = false; | ||
| 1867 | ++c.handshakes; | ||
| 1868 | |||
| 1869 | // save access to peer certificate | ||
| 1870 | c.peerCertificate = client ? | ||
| 1871 | c.session.serverCertificate : c.session.clientCertificate; | ||
| 1872 | |||
| 1873 | // send records | ||
| 1874 | tls.flush(c); | ||
| 1875 | |||
| 1876 | // now connected | ||
| 1877 | c.isConnected = true; | ||
| 1878 | c.connected(c); | ||
| 1879 | |||
| 1880 | // continue | ||
| 1881 | c.process(); | ||
| 1882 | }; | ||
| 1883 | |||
| 1884 | /** | ||
| 1885 | * Called when an Alert record is received. | ||
| 1886 | * | ||
| 1887 | * @param c the connection. | ||
| 1888 | * @param record the record. | ||
| 1889 | */ | ||
| 1890 | tls.handleAlert = function(c, record) { | ||
| 1891 | // read alert | ||
| 1892 | var b = record.fragment; | ||
| 1893 |   var alert = { | ||
| 1894 | level: b.getByte(), | ||
| 1895 | description: b.getByte() | ||
| 1896 | }; | ||
| 1897 | |||
| 1898 | // TODO: consider using a table? | ||
| 1899 | // get appropriate message | ||
| 1900 | var msg; | ||
| 1901 |   switch(alert.description) { | ||
| 1902 | case tls.Alert.Description.close_notify: | ||
| 1903 | msg = 'Connection closed.'; | ||
| 1904 | break; | ||
| 1905 | case tls.Alert.Description.unexpected_message: | ||
| 1906 | msg = 'Unexpected message.'; | ||
| 1907 | break; | ||
| 1908 | case tls.Alert.Description.bad_record_mac: | ||
| 1909 | msg = 'Bad record MAC.'; | ||
| 1910 | break; | ||
| 1911 | case tls.Alert.Description.decryption_failed: | ||
| 1912 | msg = 'Decryption failed.'; | ||
| 1913 | break; | ||
| 1914 | case tls.Alert.Description.record_overflow: | ||
| 1915 | msg = 'Record overflow.'; | ||
| 1916 | break; | ||
| 1917 | case tls.Alert.Description.decompression_failure: | ||
| 1918 | msg = 'Decompression failed.'; | ||
| 1919 | break; | ||
| 1920 | case tls.Alert.Description.handshake_failure: | ||
| 1921 | msg = 'Handshake failure.'; | ||
| 1922 | break; | ||
| 1923 | case tls.Alert.Description.bad_certificate: | ||
| 1924 | msg = 'Bad certificate.'; | ||
| 1925 | break; | ||
| 1926 | case tls.Alert.Description.unsupported_certificate: | ||
| 1927 | msg = 'Unsupported certificate.'; | ||
| 1928 | break; | ||
| 1929 | case tls.Alert.Description.certificate_revoked: | ||
| 1930 | msg = 'Certificate revoked.'; | ||
| 1931 | break; | ||
| 1932 | case tls.Alert.Description.certificate_expired: | ||
| 1933 | msg = 'Certificate expired.'; | ||
| 1934 | break; | ||
| 1935 | case tls.Alert.Description.certificate_unknown: | ||
| 1936 | msg = 'Certificate unknown.'; | ||
| 1937 | break; | ||
| 1938 | case tls.Alert.Description.illegal_parameter: | ||
| 1939 | msg = 'Illegal parameter.'; | ||
| 1940 | break; | ||
| 1941 | case tls.Alert.Description.unknown_ca: | ||
| 1942 | msg = 'Unknown certificate authority.'; | ||
| 1943 | break; | ||
| 1944 | case tls.Alert.Description.access_denied: | ||
| 1945 | msg = 'Access denied.'; | ||
| 1946 | break; | ||
| 1947 | case tls.Alert.Description.decode_error: | ||
| 1948 | msg = 'Decode error.'; | ||
| 1949 | break; | ||
| 1950 | case tls.Alert.Description.decrypt_error: | ||
| 1951 | msg = 'Decrypt error.'; | ||
| 1952 | break; | ||
| 1953 | case tls.Alert.Description.export_restriction: | ||
| 1954 | msg = 'Export restriction.'; | ||
| 1955 | break; | ||
| 1956 | case tls.Alert.Description.protocol_version: | ||
| 1957 | msg = 'Unsupported protocol version.'; | ||
| 1958 | break; | ||
| 1959 | case tls.Alert.Description.insufficient_security: | ||
| 1960 | msg = 'Insufficient security.'; | ||
| 1961 | break; | ||
| 1962 | case tls.Alert.Description.internal_error: | ||
| 1963 | msg = 'Internal error.'; | ||
| 1964 | break; | ||
| 1965 | case tls.Alert.Description.user_canceled: | ||
| 1966 | msg = 'User canceled.'; | ||
| 1967 | break; | ||
| 1968 | case tls.Alert.Description.no_renegotiation: | ||
| 1969 | msg = 'Renegotiation not supported.'; | ||
| 1970 | break; | ||
| 1971 | default: | ||
| 1972 | msg = 'Unknown error.'; | ||
| 1973 | break; | ||
| 1974 | } | ||
| 1975 | |||
| 1976 | // close connection on close_notify, not an error | ||
| 1977 |   if(alert.description === tls.Alert.Description.close_notify) { | ||
| 1978 | return c.close(); | ||
| 1979 | } | ||
| 1980 | |||
| 1981 | // call error handler | ||
| 1982 |   c.error(c, { | ||
| 1983 | message: msg, | ||
| 1984 | send: false, | ||
| 1985 | // origin is the opposite end | ||
| 1986 | origin: (c.entity === tls.ConnectionEnd.client) ? 'server' : 'client', | ||
| 1987 | alert: alert | ||
| 1988 | }); | ||
| 1989 | |||
| 1990 | // continue | ||
| 1991 | c.process(); | ||
| 1992 | }; | ||
| 1993 | |||
| 1994 | /** | ||
| 1995 | * Called when a Handshake record is received. | ||
| 1996 | * | ||
| 1997 | * @param c the connection. | ||
| 1998 | * @param record the record. | ||
| 1999 | */ | ||
| 2000 | tls.handleHandshake = function(c, record) { | ||
| 2001 | // get the handshake type and message length | ||
| 2002 | var b = record.fragment; | ||
| 2003 | var type = b.getByte(); | ||
| 2004 | var length = b.getInt24(); | ||
| 2005 | |||
| 2006 | // see if the record fragment doesn't yet contain the full message | ||
| 2007 |   if(length > b.length()) { | ||
| 2008 | // cache the record, clear its fragment, and reset the buffer read | ||
| 2009 | // pointer before the type and length were read | ||
| 2010 | c.fragmented = record; | ||
| 2011 | record.fragment = forge.util.createBuffer(); | ||
| 2012 | b.read -= 4; | ||
| 2013 | |||
| 2014 | // continue | ||
| 2015 | return c.process(); | ||
| 2016 | } | ||
| 2017 | |||
| 2018 | // full message now available, clear cache, reset read pointer to | ||
| 2019 | // before type and length | ||
| 2020 | c.fragmented = null; | ||
| 2021 | b.read -= 4; | ||
| 2022 | |||
| 2023 | // save the handshake bytes for digestion after handler is found | ||
| 2024 | // (include type and length of handshake msg) | ||
| 2025 | var bytes = b.bytes(length + 4); | ||
| 2026 | |||
| 2027 | // restore read pointer | ||
| 2028 | b.read += 4; | ||
| 2029 | |||
| 2030 | // handle expected message | ||
| 2031 |   if(type in hsTable[c.entity][c.expect]) { | ||
| 2032 | // initialize server session | ||
| 2033 |     if(c.entity === tls.ConnectionEnd.server && !c.open && !c.fail) { | ||
| 2034 | c.handshaking = true; | ||
| 2035 |       c.session = { | ||
| 2036 | version: null, | ||
| 2037 |         extensions: { | ||
| 2038 |           server_name: { | ||
| 2039 | serverNameList: [] | ||
| 2040 | } | ||
| 2041 | }, | ||
| 2042 | cipherSuite: null, | ||
| 2043 | compressionMethod: null, | ||
| 2044 | serverCertificate: null, | ||
| 2045 | clientCertificate: null, | ||
| 2046 | md5: forge.md.md5.create(), | ||
| 2047 | sha1: forge.md.sha1.create() | ||
| 2048 | }; | ||
| 2049 | } | ||
| 2050 | |||
| 2051 | /* Update handshake messages digest. Finished and CertificateVerify | ||
| 2052 | messages are not digested here. They can't be digested as part of | ||
| 2053 | the verify_data that they contain. These messages are manually | ||
| 2054 | digested in their handlers. HelloRequest messages are simply never | ||
| 2055 | included in the handshake message digest according to spec. */ | ||
| 2056 | if(type !== tls.HandshakeType.hello_request && | ||
| 2057 | type !== tls.HandshakeType.certificate_verify && | ||
| 2058 |       type !== tls.HandshakeType.finished) { | ||
| 2059 | c.session.md5.update(bytes); | ||
| 2060 | c.session.sha1.update(bytes); | ||
| 2061 | } | ||
| 2062 | |||
| 2063 | // handle specific handshake type record | ||
| 2064 | hsTable[c.entity][c.expect][type](c, record, length); | ||
| 2065 |   } else { | ||
| 2066 | // unexpected record | ||
| 2067 | tls.handleUnexpected(c, record); | ||
| 2068 | } | ||
| 2069 | }; | ||
| 2070 | |||
| 2071 | /** | ||
| 2072 | * Called when an ApplicationData record is received. | ||
| 2073 | * | ||
| 2074 | * @param c the connection. | ||
| 2075 | * @param record the record. | ||
| 2076 | */ | ||
| 2077 | tls.handleApplicationData = function(c, record) { | ||
| 2078 | // buffer data, notify that its ready | ||
| 2079 | c.data.putBuffer(record.fragment); | ||
| 2080 | c.dataReady(c); | ||
| 2081 | |||
| 2082 | // continue | ||
| 2083 | c.process(); | ||
| 2084 | }; | ||
| 2085 | |||
| 2086 | /** | ||
| 2087 | * Called when a Heartbeat record is received. | ||
| 2088 | * | ||
| 2089 | * @param c the connection. | ||
| 2090 | * @param record the record. | ||
| 2091 | */ | ||
| 2092 | tls.handleHeartbeat = function(c, record) { | ||
| 2093 | // get the heartbeat type and payload | ||
| 2094 | var b = record.fragment; | ||
| 2095 | var type = b.getByte(); | ||
| 2096 | var length = b.getInt16(); | ||
| 2097 | var payload = b.getBytes(length); | ||
| 2098 | |||
| 2099 |   if(type === tls.HeartbeatMessageType.heartbeat_request) { | ||
| 2100 | // discard request during handshake or if length is too large | ||
| 2101 |     if(c.handshaking || length > payload.length) { | ||
| 2102 | // continue | ||
| 2103 | return c.process(); | ||
| 2104 | } | ||
| 2105 | // retransmit payload | ||
| 2106 |     tls.queue(c, tls.createRecord(c, { | ||
| 2107 | type: tls.ContentType.heartbeat, | ||
| 2108 | data: tls.createHeartbeat( | ||
| 2109 | tls.HeartbeatMessageType.heartbeat_response, payload) | ||
| 2110 | })); | ||
| 2111 | tls.flush(c); | ||
| 2112 |   } else if(type === tls.HeartbeatMessageType.heartbeat_response) { | ||
| 2113 | // check payload against expected payload, discard heartbeat if no match | ||
| 2114 |     if(payload !== c.expectedHeartbeatPayload) { | ||
| 2115 | // continue | ||
| 2116 | return c.process(); | ||
| 2117 | } | ||
| 2118 | |||
| 2119 | // notify that a valid heartbeat was received | ||
| 2120 |     if(c.heartbeatReceived) { | ||
| 2121 | c.heartbeatReceived(c, forge.util.createBuffer(payload)); | ||
| 2122 | } | ||
| 2123 | } | ||
| 2124 | |||
| 2125 | // continue | ||
| 2126 | c.process(); | ||
| 2127 | }; | ||
| 2128 | |||
| 2129 | /** | ||
| 2130 | * The transistional state tables for receiving TLS records. It maps the | ||
| 2131 | * current TLS engine state and a received record to a function to handle the | ||
| 2132 | * record and update the state. | ||
| 2133 | * | ||
| 2134 | * For instance, if the current state is SHE, then the TLS engine is expecting | ||
| 2135 | * a ServerHello record. Once a record is received, the handler function is | ||
| 2136 | * looked up using the state SHE and the record's content type. | ||
| 2137 | * | ||
| 2138 | * The resulting function will either be an error handler or a record handler. | ||
| 2139 | * The function will take whatever action is appropriate and update the state | ||
| 2140 | * for the next record. | ||
| 2141 | * | ||
| 2142 | * The states are all based on possible server record types. Note that the | ||
| 2143 | * client will never specifically expect to receive a HelloRequest or an alert | ||
| 2144 | * from the server so there is no state that reflects this. These messages may | ||
| 2145 | * occur at any time. | ||
| 2146 | * | ||
| 2147 | * There are two tables for mapping states because there is a second tier of | ||
| 2148 | * types for handshake messages. Once a record with a content type of handshake | ||
| 2149 | * is received, the handshake record handler will look up the handshake type in | ||
| 2150 | * the secondary map to get its appropriate handler. | ||
| 2151 | * | ||
| 2152 | * Valid message orders are as follows: | ||
| 2153 | * | ||
| 2154 | * =======================FULL HANDSHAKE====================== | ||
| 2155 | * Client Server | ||
| 2156 | * | ||
| 2157 | * ClientHello --------> | ||
| 2158 | * ServerHello | ||
| 2159 | * Certificate* | ||
| 2160 | * ServerKeyExchange* | ||
| 2161 | * CertificateRequest* | ||
| 2162 | * <-------- ServerHelloDone | ||
| 2163 | * Certificate* | ||
| 2164 | * ClientKeyExchange | ||
| 2165 | * CertificateVerify* | ||
| 2166 | * [ChangeCipherSpec] | ||
| 2167 | * Finished --------> | ||
| 2168 | * [ChangeCipherSpec] | ||
| 2169 | * <-------- Finished | ||
| 2170 | * Application Data <-------> Application Data | ||
| 2171 | * | ||
| 2172 | * =====================SESSION RESUMPTION===================== | ||
| 2173 | * Client Server | ||
| 2174 | * | ||
| 2175 | * ClientHello --------> | ||
| 2176 | * ServerHello | ||
| 2177 | * [ChangeCipherSpec] | ||
| 2178 | * <-------- Finished | ||
| 2179 | * [ChangeCipherSpec] | ||
| 2180 | * Finished --------> | ||
| 2181 | * Application Data <-------> Application Data | ||
| 2182 | */ | ||
| 2183 | // client expect states (indicate which records are expected to be received) | ||
| 2184 | var SHE = 0; // rcv server hello | ||
| 2185 | var SCE = 1; // rcv server certificate | ||
| 2186 | var SKE = 2; // rcv server key exchange | ||
| 2187 | var SCR = 3; // rcv certificate request | ||
| 2188 | var SHD = 4; // rcv server hello done | ||
| 2189 | var SCC = 5; // rcv change cipher spec | ||
| 2190 | var SFI = 6; // rcv finished | ||
| 2191 | var SAD = 7; // rcv application data | ||
| 2192 | var SER = 8; // not expecting any messages at this point | ||
| 2193 | |||
| 2194 | // server expect states | ||
| 2195 | var CHE = 0; // rcv client hello | ||
| 2196 | var CCE = 1; // rcv client certificate | ||
| 2197 | var CKE = 2; // rcv client key exchange | ||
| 2198 | var CCV = 3; // rcv certificate verify | ||
| 2199 | var CCC = 4; // rcv change cipher spec | ||
| 2200 | var CFI = 5; // rcv finished | ||
| 2201 | var CAD = 6; // rcv application data | ||
| 2202 | var CER = 7; // not expecting any messages at this point | ||
| 2203 | |||
| 2204 | // map client current expect state and content type to function | ||
| 2205 | var __ = tls.handleUnexpected; | ||
| 2206 | var R0 = tls.handleChangeCipherSpec; | ||
| 2207 | var R1 = tls.handleAlert; | ||
| 2208 | var R2 = tls.handleHandshake; | ||
| 2209 | var R3 = tls.handleApplicationData; | ||
| 2210 | var R4 = tls.handleHeartbeat; | ||
| 2211 | var ctTable = []; | ||
| 2212 | ctTable[tls.ConnectionEnd.client] = [ | ||
| 2213 | // CC,AL,HS,AD,HB | ||
| 2214 | /*SHE*/[__,R1,R2,__,R4], | ||
| 2215 | /*SCE*/[__,R1,R2,__,R4], | ||
| 2216 | /*SKE*/[__,R1,R2,__,R4], | ||
| 2217 | /*SCR*/[__,R1,R2,__,R4], | ||
| 2218 | /*SHD*/[__,R1,R2,__,R4], | ||
| 2219 | /*SCC*/[R0,R1,__,__,R4], | ||
| 2220 | /*SFI*/[__,R1,R2,__,R4], | ||
| 2221 | /*SAD*/[__,R1,R2,R3,R4], | ||
| 2222 | /*SER*/[__,R1,R2,__,R4] | ||
| 2223 | ]; | ||
| 2224 | |||
| 2225 | // map server current expect state and content type to function | ||
| 2226 | ctTable[tls.ConnectionEnd.server] = [ | ||
| 2227 | // CC,AL,HS,AD | ||
| 2228 | /*CHE*/[__,R1,R2,__,R4], | ||
| 2229 | /*CCE*/[__,R1,R2,__,R4], | ||
| 2230 | /*CKE*/[__,R1,R2,__,R4], | ||
| 2231 | /*CCV*/[__,R1,R2,__,R4], | ||
| 2232 | /*CCC*/[R0,R1,__,__,R4], | ||
| 2233 | /*CFI*/[__,R1,R2,__,R4], | ||
| 2234 | /*CAD*/[__,R1,R2,R3,R4], | ||
| 2235 | /*CER*/[__,R1,R2,__,R4] | ||
| 2236 | ]; | ||
| 2237 | |||
| 2238 | // map client current expect state and handshake type to function | ||
| 2239 | var H0 = tls.handleHelloRequest; | ||
| 2240 | var H1 = tls.handleServerHello; | ||
| 2241 | var H2 = tls.handleCertificate; | ||
| 2242 | var H3 = tls.handleServerKeyExchange; | ||
| 2243 | var H4 = tls.handleCertificateRequest; | ||
| 2244 | var H5 = tls.handleServerHelloDone; | ||
| 2245 | var H6 = tls.handleFinished; | ||
| 2246 | var hsTable = []; | ||
| 2247 | hsTable[tls.ConnectionEnd.client] = [ | ||
| 2248 | // HR,01,SH,03,04,05,06,07,08,09,10,SC,SK,CR,HD,15,CK,17,18,19,FI | ||
| 2249 | /*SHE*/[__,__,H1,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__], | ||
| 2250 | /*SCE*/[H0,__,__,__,__,__,__,__,__,__,__,H2,H3,H4,H5,__,__,__,__,__,__], | ||
| 2251 | /*SKE*/[H0,__,__,__,__,__,__,__,__,__,__,__,H3,H4,H5,__,__,__,__,__,__], | ||
| 2252 | /*SCR*/[H0,__,__,__,__,__,__,__,__,__,__,__,__,H4,H5,__,__,__,__,__,__], | ||
| 2253 | /*SHD*/[H0,__,__,__,__,__,__,__,__,__,__,__,__,__,H5,__,__,__,__,__,__], | ||
| 2254 | /*SCC*/[H0,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__], | ||
| 2255 | /*SFI*/[H0,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,H6], | ||
| 2256 | /*SAD*/[H0,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__], | ||
| 2257 | /*SER*/[H0,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__] | ||
| 2258 | ]; | ||
| 2259 | |||
| 2260 | // map server current expect state and handshake type to function | ||
| 2261 | // Note: CAD[CH] does not map to FB because renegotation is prohibited | ||
| 2262 | var H7 = tls.handleClientHello; | ||
| 2263 | var H8 = tls.handleClientKeyExchange; | ||
| 2264 | var H9 = tls.handleCertificateVerify; | ||
| 2265 | hsTable[tls.ConnectionEnd.server] = [ | ||
| 2266 | // 01,CH,02,03,04,05,06,07,08,09,10,CC,12,13,14,CV,CK,17,18,19,FI | ||
| 2267 | /*CHE*/[__,H7,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__], | ||
| 2268 | /*CCE*/[__,__,__,__,__,__,__,__,__,__,__,H2,__,__,__,__,__,__,__,__,__], | ||
| 2269 | /*CKE*/[__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,H8,__,__,__,__], | ||
| 2270 | /*CCV*/[__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,H9,__,__,__,__,__], | ||
| 2271 | /*CCC*/[__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__], | ||
| 2272 | /*CFI*/[__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,H6], | ||
| 2273 | /*CAD*/[__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__], | ||
| 2274 | /*CER*/[__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__] | ||
| 2275 | ]; | ||
| 2276 | |||
| 2277 | /** | ||
| 2278 | * Generates the master_secret and keys using the given security parameters. | ||
| 2279 | * | ||
| 2280 | * The security parameters for a TLS connection state are defined as such: | ||
| 2281 | * | ||
| 2282 |  * struct { | ||
| 2283 | * ConnectionEnd entity; | ||
| 2284 | * PRFAlgorithm prf_algorithm; | ||
| 2285 | * BulkCipherAlgorithm bulk_cipher_algorithm; | ||
| 2286 | * CipherType cipher_type; | ||
| 2287 | * uint8 enc_key_length; | ||
| 2288 | * uint8 block_length; | ||
| 2289 | * uint8 fixed_iv_length; | ||
| 2290 | * uint8 record_iv_length; | ||
| 2291 | * MACAlgorithm mac_algorithm; | ||
| 2292 | * uint8 mac_length; | ||
| 2293 | * uint8 mac_key_length; | ||
| 2294 | * CompressionMethod compression_algorithm; | ||
| 2295 | * opaque master_secret[48]; | ||
| 2296 | * opaque client_random[32]; | ||
| 2297 | * opaque server_random[32]; | ||
| 2298 | * } SecurityParameters; | ||
| 2299 | * | ||
| 2300 | * Note that this definition is from TLS 1.2. In TLS 1.0 some of these | ||
| 2301 | * parameters are ignored because, for instance, the PRFAlgorithm is a | ||
| 2302 | * builtin-fixed algorithm combining iterations of MD5 and SHA-1 in TLS 1.0. | ||
| 2303 | * | ||
| 2304 | * The Record Protocol requires an algorithm to generate keys required by the | ||
| 2305 | * current connection state. | ||
| 2306 | * | ||
| 2307 | * The master secret is expanded into a sequence of secure bytes, which is then | ||
| 2308 | * split to a client write MAC key, a server write MAC key, a client write | ||
| 2309 | * encryption key, and a server write encryption key. In TLS 1.0 a client write | ||
| 2310 | * IV and server write IV are also generated. Each of these is generated from | ||
| 2311 | * the byte sequence in that order. Unused values are empty. In TLS 1.2, some | ||
| 2312 | * AEAD ciphers may additionally require a client write IV and a server write | ||
| 2313 | * IV (see Section 6.2.3.3). | ||
| 2314 | * | ||
| 2315 | * When keys, MAC keys, and IVs are generated, the master secret is used as an | ||
| 2316 | * entropy source. | ||
| 2317 | * | ||
| 2318 | * To generate the key material, compute: | ||
| 2319 | * | ||
| 2320 | * master_secret = PRF(pre_master_secret, "master secret", | ||
| 2321 | * ClientHello.random + ServerHello.random) | ||
| 2322 | * | ||
| 2323 | * key_block = PRF(SecurityParameters.master_secret, | ||
| 2324 | * "key expansion", | ||
| 2325 | * SecurityParameters.server_random + | ||
| 2326 | * SecurityParameters.client_random); | ||
| 2327 | * | ||
| 2328 | * until enough output has been generated. Then, the key_block is | ||
| 2329 | * partitioned as follows: | ||
| 2330 | * | ||
| 2331 | * client_write_MAC_key[SecurityParameters.mac_key_length] | ||
| 2332 | * server_write_MAC_key[SecurityParameters.mac_key_length] | ||
| 2333 | * client_write_key[SecurityParameters.enc_key_length] | ||
| 2334 | * server_write_key[SecurityParameters.enc_key_length] | ||
| 2335 | * client_write_IV[SecurityParameters.fixed_iv_length] | ||
| 2336 | * server_write_IV[SecurityParameters.fixed_iv_length] | ||
| 2337 | * | ||
| 2338 | * In TLS 1.2, the client_write_IV and server_write_IV are only generated for | ||
| 2339 | * implicit nonce techniques as described in Section 3.2.1 of [AEAD]. This | ||
| 2340 | * implementation uses TLS 1.0 so IVs are generated. | ||
| 2341 | * | ||
| 2342 | * Implementation note: The currently defined cipher suite which requires the | ||
| 2343 | * most material is AES_256_CBC_SHA256. It requires 2 x 32 byte keys and 2 x 32 | ||
| 2344 | * byte MAC keys, for a total 128 bytes of key material. In TLS 1.0 it also | ||
| 2345 | * requires 2 x 16 byte IVs, so it actually takes 160 bytes of key material. | ||
| 2346 | * | ||
| 2347 | * @param c the connection. | ||
| 2348 | * @param sp the security parameters to use. | ||
| 2349 | * | ||
| 2350 | * @return the security keys. | ||
| 2351 | */ | ||
| 2352 | tls.generateKeys = function(c, sp) { | ||
| 2353 | // TLS_RSA_WITH_AES_128_CBC_SHA (required to be compliant with TLS 1.2) & | ||
| 2354 | // TLS_RSA_WITH_AES_256_CBC_SHA are the only cipher suites implemented | ||
| 2355 | // at present | ||
| 2356 | |||
| 2357 | // TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA is required to be compliant with | ||
| 2358 | // TLS 1.0 but we don't care right now because AES is better and we have | ||
| 2359 | // an implementation for it | ||
| 2360 | |||
| 2361 | // TODO: TLS 1.2 implementation | ||
| 2362 | /* | ||
| 2363 | // determine the PRF | ||
| 2364 | var prf; | ||
| 2365 |   switch(sp.prf_algorithm) { | ||
| 2366 | case tls.PRFAlgorithm.tls_prf_sha256: | ||
| 2367 | prf = prf_sha256; | ||
| 2368 | break; | ||
| 2369 | default: | ||
| 2370 | // should never happen | ||
| 2371 |     throw new Error('Invalid PRF'); | ||
| 2372 | } | ||
| 2373 | */ | ||
| 2374 | |||
| 2375 | // TLS 1.0/1.1 implementation | ||
| 2376 | var prf = prf_TLS1; | ||
| 2377 | |||
| 2378 | // concatenate server and client random | ||
| 2379 | var random = sp.client_random + sp.server_random; | ||
| 2380 | |||
| 2381 | // only create master secret if session is new | ||
| 2382 |   if(!c.session.resuming) { | ||
| 2383 | // create master secret, clean up pre-master secret | ||
| 2384 | sp.master_secret = prf( | ||
| 2385 | sp.pre_master_secret, 'master secret', random, 48).bytes(); | ||
| 2386 | sp.pre_master_secret = null; | ||
| 2387 | } | ||
| 2388 | |||
| 2389 | // generate the amount of key material needed | ||
| 2390 | random = sp.server_random + sp.client_random; | ||
| 2391 | var length = 2 * sp.mac_key_length + 2 * sp.enc_key_length; | ||
| 2392 | |||
| 2393 | // include IV for TLS/1.0 | ||
| 2394 | var tls10 = (c.version.major === tls.Versions.TLS_1_0.major && | ||
| 2395 | c.version.minor === tls.Versions.TLS_1_0.minor); | ||
| 2396 |   if(tls10) { | ||
| 2397 | length += 2 * sp.fixed_iv_length; | ||
| 2398 | } | ||
| 2399 | var km = prf(sp.master_secret, 'key expansion', random, length); | ||
| 2400 | |||
| 2401 | // split the key material into the MAC and encryption keys | ||
| 2402 |   var rval = { | ||
| 2403 | client_write_MAC_key: km.getBytes(sp.mac_key_length), | ||
| 2404 | server_write_MAC_key: km.getBytes(sp.mac_key_length), | ||
| 2405 | client_write_key: km.getBytes(sp.enc_key_length), | ||
| 2406 | server_write_key: km.getBytes(sp.enc_key_length) | ||
| 2407 | }; | ||
| 2408 | |||
| 2409 | // include TLS 1.0 IVs | ||
| 2410 |   if(tls10) { | ||
| 2411 | rval.client_write_IV = km.getBytes(sp.fixed_iv_length); | ||
| 2412 | rval.server_write_IV = km.getBytes(sp.fixed_iv_length); | ||
| 2413 | } | ||
| 2414 | |||
| 2415 | return rval; | ||
| 2416 | }; | ||
| 2417 | |||
| 2418 | /** | ||
| 2419 | * Creates a new initialized TLS connection state. A connection state has | ||
| 2420 | * a read mode and a write mode. | ||
| 2421 | * | ||
| 2422 | * compression state: | ||
| 2423 | * The current state of the compression algorithm. | ||
| 2424 | * | ||
| 2425 | * cipher state: | ||
| 2426 | * The current state of the encryption algorithm. This will consist of the | ||
| 2427 | * scheduled key for that connection. For stream ciphers, this will also | ||
| 2428 | * contain whatever state information is necessary to allow the stream to | ||
| 2429 | * continue to encrypt or decrypt data. | ||
| 2430 | * | ||
| 2431 | * MAC key: | ||
| 2432 | * The MAC key for the connection. | ||
| 2433 | * | ||
| 2434 | * sequence number: | ||
| 2435 | * Each connection state contains a sequence number, which is maintained | ||
| 2436 | * separately for read and write states. The sequence number MUST be set to | ||
| 2437 | * zero whenever a connection state is made the active state. Sequence | ||
| 2438 | * numbers are of type uint64 and may not exceed 2^64-1. Sequence numbers do | ||
| 2439 | * not wrap. If a TLS implementation would need to wrap a sequence number, | ||
| 2440 | * it must renegotiate instead. A sequence number is incremented after each | ||
| 2441 | * record: specifically, the first record transmitted under a particular | ||
| 2442 | * connection state MUST use sequence number 0. | ||
| 2443 | * | ||
| 2444 | * @param c the connection. | ||
| 2445 | * | ||
| 2446 | * @return the new initialized TLS connection state. | ||
| 2447 | */ | ||
| 2448 | tls.createConnectionState = function(c) { | ||
| 2449 | var client = (c.entity === tls.ConnectionEnd.client); | ||
| 2450 | |||
| 2451 |   var createMode = function() { | ||
| 2452 |     var mode = { | ||
| 2453 | // two 32-bit numbers, first is most significant | ||
| 2454 | sequenceNumber: [0, 0], | ||
| 2455 | macKey: null, | ||
| 2456 | macLength: 0, | ||
| 2457 | macFunction: null, | ||
| 2458 | cipherState: null, | ||
| 2459 |       cipherFunction: function(record) {return true;}, | ||
| 2460 | compressionState: null, | ||
| 2461 |       compressFunction: function(record) {return true;}, | ||
| 2462 |       updateSequenceNumber: function() { | ||
| 2463 |         if(mode.sequenceNumber[1] === 0xFFFFFFFF) { | ||
| 2464 | mode.sequenceNumber[1] = 0; | ||
| 2465 | ++mode.sequenceNumber[0]; | ||
| 2466 |         } else { | ||
| 2467 | ++mode.sequenceNumber[1]; | ||
| 2468 | } | ||
| 2469 | } | ||
| 2470 | }; | ||
| 2471 | return mode; | ||
| 2472 | }; | ||
| 2473 |   var state = { | ||
| 2474 | read: createMode(), | ||
| 2475 | write: createMode() | ||
| 2476 | }; | ||
| 2477 | |||
| 2478 | // update function in read mode will decrypt then decompress a record | ||
| 2479 |   state.read.update = function(c, record) { | ||
| 2480 |     if(!state.read.cipherFunction(record, state.read)) { | ||
| 2481 |       c.error(c, { | ||
| 2482 | message: 'Could not decrypt record or bad MAC.', | ||
| 2483 | send: true, | ||
| 2484 |         alert: { | ||
| 2485 | level: tls.Alert.Level.fatal, | ||
| 2486 | // doesn't matter if decryption failed or MAC was | ||
| 2487 | // invalid, return the same error so as not to reveal | ||
| 2488 | // which one occurred | ||
| 2489 | description: tls.Alert.Description.bad_record_mac | ||
| 2490 | } | ||
| 2491 | }); | ||
| 2492 |     } else if(!state.read.compressFunction(c, record, state.read)) { | ||
| 2493 |       c.error(c, { | ||
| 2494 | message: 'Could not decompress record.', | ||
| 2495 | send: true, | ||
| 2496 |         alert: { | ||
| 2497 | level: tls.Alert.Level.fatal, | ||
| 2498 | description: tls.Alert.Description.decompression_failure | ||
| 2499 | } | ||
| 2500 | }); | ||
| 2501 | } | ||
| 2502 | return !c.fail; | ||
| 2503 | }; | ||
| 2504 | |||
| 2505 | // update function in write mode will compress then encrypt a record | ||
| 2506 |   state.write.update = function(c, record) { | ||
| 2507 |     if(!state.write.compressFunction(c, record, state.write)) { | ||
| 2508 | // error, but do not send alert since it would require | ||
| 2509 | // compression as well | ||
| 2510 |       c.error(c, { | ||
| 2511 | message: 'Could not compress record.', | ||
| 2512 | send: false, | ||
| 2513 |         alert: { | ||
| 2514 | level: tls.Alert.Level.fatal, | ||
| 2515 | description: tls.Alert.Description.internal_error | ||
| 2516 | } | ||
| 2517 | }); | ||
| 2518 |     } else if(!state.write.cipherFunction(record, state.write)) { | ||
| 2519 | // error, but do not send alert since it would require | ||
| 2520 | // encryption as well | ||
| 2521 |       c.error(c, { | ||
| 2522 | message: 'Could not encrypt record.', | ||
| 2523 | send: false, | ||
| 2524 |         alert: { | ||
| 2525 | level: tls.Alert.Level.fatal, | ||
| 2526 | description: tls.Alert.Description.internal_error | ||
| 2527 | } | ||
| 2528 | }); | ||
| 2529 | } | ||
| 2530 | return !c.fail; | ||
| 2531 | }; | ||
| 2532 | |||
| 2533 | // handle security parameters | ||
| 2534 |   if(c.session) { | ||
| 2535 | var sp = c.session.sp; | ||
| 2536 | c.session.cipherSuite.initSecurityParameters(sp); | ||
| 2537 | |||
| 2538 | // generate keys | ||
| 2539 | sp.keys = tls.generateKeys(c, sp); | ||
| 2540 | state.read.macKey = client ? | ||
| 2541 | sp.keys.server_write_MAC_key : sp.keys.client_write_MAC_key; | ||
| 2542 | state.write.macKey = client ? | ||
| 2543 | sp.keys.client_write_MAC_key : sp.keys.server_write_MAC_key; | ||
| 2544 | |||
| 2545 | // cipher suite setup | ||
| 2546 | c.session.cipherSuite.initConnectionState(state, c, sp); | ||
| 2547 | |||
| 2548 | // compression setup | ||
| 2549 |     switch(sp.compression_algorithm) { | ||
| 2550 | case tls.CompressionMethod.none: | ||
| 2551 | break; | ||
| 2552 | case tls.CompressionMethod.deflate: | ||
| 2553 | state.read.compressFunction = inflate; | ||
| 2554 | state.write.compressFunction = deflate; | ||
| 2555 | break; | ||
| 2556 | default: | ||
| 2557 |       throw new Error('Unsupported compression algorithm.'); | ||
| 2558 | } | ||
| 2559 | } | ||
| 2560 | |||
| 2561 | return state; | ||
| 2562 | }; | ||
| 2563 | |||
| 2564 | /** | ||
| 2565 | * Creates a Random structure. | ||
| 2566 | * | ||
| 2567 |  * struct { | ||
| 2568 | * uint32 gmt_unix_time; | ||
| 2569 | * opaque random_bytes[28]; | ||
| 2570 | * } Random; | ||
| 2571 | * | ||
| 2572 | * gmt_unix_time: | ||
| 2573 | * The current time and date in standard UNIX 32-bit format (seconds since | ||
| 2574 | * the midnight starting Jan 1, 1970, UTC, ignoring leap seconds) according | ||
| 2575 | * to the sender's internal clock. Clocks are not required to be set | ||
| 2576 | * correctly by the basic TLS protocol; higher-level or application | ||
| 2577 | * protocols may define additional requirements. Note that, for historical | ||
| 2578 | * reasons, the data element is named using GMT, the predecessor of the | ||
| 2579 | * current worldwide time base, UTC. | ||
| 2580 | * random_bytes: | ||
| 2581 | * 28 bytes generated by a secure random number generator. | ||
| 2582 | * | ||
| 2583 | * @return the Random structure as a byte array. | ||
| 2584 | */ | ||
| 2585 | tls.createRandom = function() { | ||
| 2586 | // get UTC milliseconds | ||
| 2587 | var d = new Date(); | ||
| 2588 | var utc = +d + d.getTimezoneOffset() * 60000; | ||
| 2589 | var rval = forge.util.createBuffer(); | ||
| 2590 | rval.putInt32(utc); | ||
| 2591 | rval.putBytes(forge.random.getBytes(28)); | ||
| 2592 | return rval; | ||
| 2593 | }; | ||
| 2594 | |||
| 2595 | /** | ||
| 2596 | * Creates a TLS record with the given type and data. | ||
| 2597 | * | ||
| 2598 | * @param c the connection. | ||
| 2599 | * @param options: | ||
| 2600 | * type: the record type. | ||
| 2601 | * data: the plain text data in a byte buffer. | ||
| 2602 | * | ||
| 2603 | * @return the created record. | ||
| 2604 | */ | ||
| 2605 | tls.createRecord = function(c, options) { | ||
| 2606 |   if(!options.data) { | ||
| 2607 | return null; | ||
| 2608 | } | ||
| 2609 |   var record = { | ||
| 2610 | type: options.type, | ||
| 2611 |     version: { | ||
| 2612 | major: c.version.major, | ||
| 2613 | minor: c.version.minor | ||
| 2614 | }, | ||
| 2615 | length: options.data.length(), | ||
| 2616 | fragment: options.data | ||
| 2617 | }; | ||
| 2618 | return record; | ||
| 2619 | }; | ||
| 2620 | |||
| 2621 | /** | ||
| 2622 | * Creates a TLS alert record. | ||
| 2623 | * | ||
| 2624 | * @param c the connection. | ||
| 2625 | * @param alert: | ||
| 2626 | * level: the TLS alert level. | ||
| 2627 | * description: the TLS alert description. | ||
| 2628 | * | ||
| 2629 | * @return the created alert record. | ||
| 2630 | */ | ||
| 2631 | tls.createAlert = function(c, alert) { | ||
| 2632 | var b = forge.util.createBuffer(); | ||
| 2633 | b.putByte(alert.level); | ||
| 2634 | b.putByte(alert.description); | ||
| 2635 |   return tls.createRecord(c, { | ||
| 2636 | type: tls.ContentType.alert, | ||
| 2637 | data: b | ||
| 2638 | }); | ||
| 2639 | }; | ||
| 2640 | |||
| 2641 | /* The structure of a TLS handshake message. | ||
| 2642 | * | ||
| 2643 |  * struct { | ||
| 2644 | * HandshakeType msg_type; // handshake type | ||
| 2645 | * uint24 length; // bytes in message | ||
| 2646 |  *    select(HandshakeType) { | ||
| 2647 | * case hello_request: HelloRequest; | ||
| 2648 | * case client_hello: ClientHello; | ||
| 2649 | * case server_hello: ServerHello; | ||
| 2650 | * case certificate: Certificate; | ||
| 2651 | * case server_key_exchange: ServerKeyExchange; | ||
| 2652 | * case certificate_request: CertificateRequest; | ||
| 2653 | * case server_hello_done: ServerHelloDone; | ||
| 2654 | * case certificate_verify: CertificateVerify; | ||
| 2655 | * case client_key_exchange: ClientKeyExchange; | ||
| 2656 | * case finished: Finished; | ||
| 2657 | * } body; | ||
| 2658 | * } Handshake; | ||
| 2659 | */ | ||
| 2660 | |||
| 2661 | /** | ||
| 2662 | * Creates a ClientHello message. | ||
| 2663 | * | ||
| 2664 | * opaque SessionID<0..32>; | ||
| 2665 |  * enum { null(0), deflate(1), (255) } CompressionMethod; | ||
| 2666 | * uint8 CipherSuite[2]; | ||
| 2667 | * | ||
| 2668 |  * struct { | ||
| 2669 | * ProtocolVersion client_version; | ||
| 2670 | * Random random; | ||
| 2671 | * SessionID session_id; | ||
| 2672 | * CipherSuite cipher_suites<2..2^16-2>; | ||
| 2673 | * CompressionMethod compression_methods<1..2^8-1>; | ||
| 2674 |  *   select(extensions_present) { | ||
| 2675 | * case false: | ||
| 2676 |  *       struct {}; | ||
| 2677 | * case true: | ||
| 2678 | * Extension extensions<0..2^16-1>; | ||
| 2679 | * }; | ||
| 2680 | * } ClientHello; | ||
| 2681 | * | ||
| 2682 | * The extension format for extended client hellos and server hellos is: | ||
| 2683 | * | ||
| 2684 |  * struct { | ||
| 2685 | * ExtensionType extension_type; | ||
| 2686 | * opaque extension_data<0..2^16-1>; | ||
| 2687 | * } Extension; | ||
| 2688 | * | ||
| 2689 | * Here: | ||
| 2690 | * | ||
| 2691 | * - "extension_type" identifies the particular extension type. | ||
| 2692 | * - "extension_data" contains information specific to the particular | ||
| 2693 | * extension type. | ||
| 2694 | * | ||
| 2695 | * The extension types defined in this document are: | ||
| 2696 | * | ||
| 2697 |  * enum { | ||
| 2698 | * server_name(0), max_fragment_length(1), | ||
| 2699 | * client_certificate_url(2), trusted_ca_keys(3), | ||
| 2700 | * truncated_hmac(4), status_request(5), (65535) | ||
| 2701 | * } ExtensionType; | ||
| 2702 | * | ||
| 2703 | * @param c the connection. | ||
| 2704 | * | ||
| 2705 | * @return the ClientHello byte buffer. | ||
| 2706 | */ | ||
| 2707 | tls.createClientHello = function(c) { | ||
| 2708 | // save hello version | ||
| 2709 |   c.session.clientHelloVersion = { | ||
| 2710 | major: c.version.major, | ||
| 2711 | minor: c.version.minor | ||
| 2712 | }; | ||
| 2713 | |||
| 2714 | // create supported cipher suites | ||
| 2715 | var cipherSuites = forge.util.createBuffer(); | ||
| 2716 |   for(var i = 0; i < c.cipherSuites.length; ++i) { | ||
| 2717 | var cs = c.cipherSuites[i]; | ||
| 2718 | cipherSuites.putByte(cs.id[0]); | ||
| 2719 | cipherSuites.putByte(cs.id[1]); | ||
| 2720 | } | ||
| 2721 | var cSuites = cipherSuites.length(); | ||
| 2722 | |||
| 2723 | // create supported compression methods, null always supported, but | ||
| 2724 | // also support deflate if connection has inflate and deflate methods | ||
| 2725 | var compressionMethods = forge.util.createBuffer(); | ||
| 2726 | compressionMethods.putByte(tls.CompressionMethod.none); | ||
| 2727 | // FIXME: deflate support disabled until issues with raw deflate data | ||
| 2728 | // without zlib headers are resolved | ||
| 2729 | /* | ||
| 2730 |   if(c.inflate !== null && c.deflate !== null) { | ||
| 2731 | compressionMethods.putByte(tls.CompressionMethod.deflate); | ||
| 2732 | } | ||
| 2733 | */ | ||
| 2734 | var cMethods = compressionMethods.length(); | ||
| 2735 | |||
| 2736 | // create TLS SNI (server name indication) extension if virtual host | ||
| 2737 | // has been specified, see RFC 3546 | ||
| 2738 | var extensions = forge.util.createBuffer(); | ||
| 2739 |   if(c.virtualHost) { | ||
| 2740 | // create extension struct | ||
| 2741 | var ext = forge.util.createBuffer(); | ||
| 2742 | ext.putByte(0x00); // type server_name (ExtensionType is 2 bytes) | ||
| 2743 | ext.putByte(0x00); | ||
| 2744 | |||
| 2745 | /* In order to provide the server name, clients MAY include an | ||
| 2746 | * extension of type "server_name" in the (extended) client hello. | ||
| 2747 | * The "extension_data" field of this extension SHALL contain | ||
| 2748 | * "ServerNameList" where: | ||
| 2749 | * | ||
| 2750 |      * struct { | ||
| 2751 | * NameType name_type; | ||
| 2752 |      *   select(name_type) { | ||
| 2753 | * case host_name: HostName; | ||
| 2754 | * } name; | ||
| 2755 | * } ServerName; | ||
| 2756 | * | ||
| 2757 |      * enum { | ||
| 2758 | * host_name(0), (255) | ||
| 2759 | * } NameType; | ||
| 2760 | * | ||
| 2761 | * opaque HostName<1..2^16-1>; | ||
| 2762 | * | ||
| 2763 |      * struct { | ||
| 2764 | * ServerName server_name_list<1..2^16-1> | ||
| 2765 | * } ServerNameList; | ||
| 2766 | */ | ||
| 2767 | var serverName = forge.util.createBuffer(); | ||
| 2768 | serverName.putByte(0x00); // type host_name | ||
| 2769 | writeVector(serverName, 2, forge.util.createBuffer(c.virtualHost)); | ||
| 2770 | |||
| 2771 | // ServerNameList is in extension_data | ||
| 2772 | var snList = forge.util.createBuffer(); | ||
| 2773 | writeVector(snList, 2, serverName); | ||
| 2774 | writeVector(ext, 2, snList); | ||
| 2775 | extensions.putBuffer(ext); | ||
| 2776 | } | ||
| 2777 | var extLength = extensions.length(); | ||
| 2778 |   if(extLength > 0) { | ||
| 2779 | // add extension vector length | ||
| 2780 | extLength += 2; | ||
| 2781 | } | ||
| 2782 | |||
| 2783 | // determine length of the handshake message | ||
| 2784 | // cipher suites and compression methods size will need to be | ||
| 2785 | // updated if more get added to the list | ||
| 2786 | var sessionId = c.session.id; | ||
| 2787 | var length = | ||
| 2788 | sessionId.length + 1 + // session ID vector | ||
| 2789 | 2 + // version (major + minor) | ||
| 2790 | 4 + 28 + // random time and random bytes | ||
| 2791 | 2 + cSuites + // cipher suites vector | ||
| 2792 | 1 + cMethods + // compression methods vector | ||
| 2793 | extLength; // extensions vector | ||
| 2794 | |||
| 2795 | // build record fragment | ||
| 2796 | var rval = forge.util.createBuffer(); | ||
| 2797 | rval.putByte(tls.HandshakeType.client_hello); | ||
| 2798 | rval.putInt24(length); // handshake length | ||
| 2799 | rval.putByte(c.version.major); // major version | ||
| 2800 | rval.putByte(c.version.minor); // minor version | ||
| 2801 | rval.putBytes(c.session.sp.client_random); // random time + bytes | ||
| 2802 | writeVector(rval, 1, forge.util.createBuffer(sessionId)); | ||
| 2803 | writeVector(rval, 2, cipherSuites); | ||
| 2804 | writeVector(rval, 1, compressionMethods); | ||
| 2805 |   if(extLength > 0) { | ||
| 2806 | writeVector(rval, 2, extensions); | ||
| 2807 | } | ||
| 2808 | return rval; | ||
| 2809 | }; | ||
| 2810 | |||
| 2811 | /** | ||
| 2812 | * Creates a ServerHello message. | ||
| 2813 | * | ||
| 2814 | * @param c the connection. | ||
| 2815 | * | ||
| 2816 | * @return the ServerHello byte buffer. | ||
| 2817 | */ | ||
| 2818 | tls.createServerHello = function(c) { | ||
| 2819 | // determine length of the handshake message | ||
| 2820 | var sessionId = c.session.id; | ||
| 2821 | var length = | ||
| 2822 | sessionId.length + 1 + // session ID vector | ||
| 2823 | 2 + // version (major + minor) | ||
| 2824 | 4 + 28 + // random time and random bytes | ||
| 2825 | 2 + // chosen cipher suite | ||
| 2826 | 1; // chosen compression method | ||
| 2827 | |||
| 2828 | // build record fragment | ||
| 2829 | var rval = forge.util.createBuffer(); | ||
| 2830 | rval.putByte(tls.HandshakeType.server_hello); | ||
| 2831 | rval.putInt24(length); // handshake length | ||
| 2832 | rval.putByte(c.version.major); // major version | ||
| 2833 | rval.putByte(c.version.minor); // minor version | ||
| 2834 | rval.putBytes(c.session.sp.server_random); // random time + bytes | ||
| 2835 | writeVector(rval, 1, forge.util.createBuffer(sessionId)); | ||
| 2836 | rval.putByte(c.session.cipherSuite.id[0]); | ||
| 2837 | rval.putByte(c.session.cipherSuite.id[1]); | ||
| 2838 | rval.putByte(c.session.compressionMethod); | ||
| 2839 | return rval; | ||
| 2840 | }; | ||
| 2841 | |||
| 2842 | /** | ||
| 2843 | * Creates a Certificate message. | ||
| 2844 | * | ||
| 2845 | * When this message will be sent: | ||
| 2846 | * This is the first message the client can send after receiving a server | ||
| 2847 | * hello done message and the first message the server can send after | ||
| 2848 | * sending a ServerHello. This client message is only sent if the server | ||
| 2849 | * requests a certificate. If no suitable certificate is available, the | ||
| 2850 | * client should send a certificate message containing no certificates. If | ||
| 2851 | * client authentication is required by the server for the handshake to | ||
| 2852 | * continue, it may respond with a fatal handshake failure alert. | ||
| 2853 | * | ||
| 2854 | * opaque ASN.1Cert<1..2^24-1>; | ||
| 2855 | * | ||
| 2856 |  * struct { | ||
| 2857 | * ASN.1Cert certificate_list<0..2^24-1>; | ||
| 2858 | * } Certificate; | ||
| 2859 | * | ||
| 2860 | * @param c the connection. | ||
| 2861 | * | ||
| 2862 | * @return the Certificate byte buffer. | ||
| 2863 | */ | ||
| 2864 | tls.createCertificate = function(c) { | ||
| 2865 | // TODO: check certificate request to ensure types are supported | ||
| 2866 | |||
| 2867 | // get a certificate (a certificate as a PEM string) | ||
| 2868 | var client = (c.entity === tls.ConnectionEnd.client); | ||
| 2869 | var cert = null; | ||
| 2870 |   if(c.getCertificate) { | ||
| 2871 | var hint; | ||
| 2872 |     if(client) { | ||
| 2873 | hint = c.session.certificateRequest; | ||
| 2874 |     } else { | ||
| 2875 | hint = c.session.extensions.server_name.serverNameList; | ||
| 2876 | } | ||
| 2877 | cert = c.getCertificate(c, hint); | ||
| 2878 | } | ||
| 2879 | |||
| 2880 | // buffer to hold certificate list | ||
| 2881 | var certList = forge.util.createBuffer(); | ||
| 2882 |   if(cert !== null) { | ||
| 2883 |     try { | ||
| 2884 | // normalize cert to a chain of certificates | ||
| 2885 |       if(!forge.util.isArray(cert)) { | ||
| 2886 | cert = [cert]; | ||
| 2887 | } | ||
| 2888 | var asn1 = null; | ||
| 2889 |       for(var i = 0; i < cert.length; ++i) { | ||
| 2890 | var msg = forge.pem.decode(cert[i])[0]; | ||
| 2891 | if(msg.type !== 'CERTIFICATE' && | ||
| 2892 | msg.type !== 'X509 CERTIFICATE' && | ||
| 2893 |           msg.type !== 'TRUSTED CERTIFICATE') { | ||
| 2894 |           var error = new Error('Could not convert certificate from PEM; PEM ' + | ||
| 2895 | 'header type is not "CERTIFICATE", "X509 CERTIFICATE", or ' + | ||
| 2896 | '"TRUSTED CERTIFICATE".'); | ||
| 2897 | error.headerType = msg.type; | ||
| 2898 | throw error; | ||
| 2899 | } | ||
| 2900 |         if(msg.procType && msg.procType.type === 'ENCRYPTED') { | ||
| 2901 |           throw new Error('Could not convert certificate from PEM; PEM is encrypted.'); | ||
| 2902 | } | ||
| 2903 | |||
| 2904 | var der = forge.util.createBuffer(msg.body); | ||
| 2905 |         if(asn1 === null) { | ||
| 2906 | asn1 = forge.asn1.fromDer(der.bytes(), false); | ||
| 2907 | } | ||
| 2908 | |||
| 2909 | // certificate entry is itself a vector with 3 length bytes | ||
| 2910 | var certBuffer = forge.util.createBuffer(); | ||
| 2911 | writeVector(certBuffer, 3, der); | ||
| 2912 | |||
| 2913 | // add cert vector to cert list vector | ||
| 2914 | certList.putBuffer(certBuffer); | ||
| 2915 | } | ||
| 2916 | |||
| 2917 | // save certificate | ||
| 2918 | cert = forge.pki.certificateFromAsn1(asn1); | ||
| 2919 |       if(client) { | ||
| 2920 | c.session.clientCertificate = cert; | ||
| 2921 |       } else { | ||
| 2922 | c.session.serverCertificate = cert; | ||
| 2923 | } | ||
| 2924 |     } catch(ex) { | ||
| 2925 |       return c.error(c, { | ||
| 2926 | message: 'Could not send certificate list.', | ||
| 2927 | cause: ex, | ||
| 2928 | send: true, | ||
| 2929 |         alert: { | ||
| 2930 | level: tls.Alert.Level.fatal, | ||
| 2931 | description: tls.Alert.Description.bad_certificate | ||
| 2932 | } | ||
| 2933 | }); | ||
| 2934 | } | ||
| 2935 | } | ||
| 2936 | |||
| 2937 | // determine length of the handshake message | ||
| 2938 | var length = 3 + certList.length(); // cert list vector | ||
| 2939 | |||
| 2940 | // build record fragment | ||
| 2941 | var rval = forge.util.createBuffer(); | ||
| 2942 | rval.putByte(tls.HandshakeType.certificate); | ||
| 2943 | rval.putInt24(length); | ||
| 2944 | writeVector(rval, 3, certList); | ||
| 2945 | return rval; | ||
| 2946 | }; | ||
| 2947 | |||
| 2948 | /** | ||
| 2949 | * Creates a ClientKeyExchange message. | ||
| 2950 | * | ||
| 2951 | * When this message will be sent: | ||
| 2952 | * This message is always sent by the client. It will immediately follow the | ||
| 2953 | * client certificate message, if it is sent. Otherwise it will be the first | ||
| 2954 | * message sent by the client after it receives the server hello done | ||
| 2955 | * message. | ||
| 2956 | * | ||
| 2957 | * Meaning of this message: | ||
| 2958 | * With this message, the premaster secret is set, either though direct | ||
| 2959 | * transmission of the RSA-encrypted secret, or by the transmission of | ||
| 2960 | * Diffie-Hellman parameters which will allow each side to agree upon the | ||
| 2961 | * same premaster secret. When the key exchange method is DH_RSA or DH_DSS, | ||
| 2962 | * client certification has been requested, and the client was able to | ||
| 2963 | * respond with a certificate which contained a Diffie-Hellman public key | ||
| 2964 | * whose parameters (group and generator) matched those specified by the | ||
| 2965 | * server in its certificate, this message will not contain any data. | ||
| 2966 | * | ||
| 2967 | * Meaning of this message: | ||
| 2968 | * If RSA is being used for key agreement and authentication, the client | ||
| 2969 | * generates a 48-byte premaster secret, encrypts it using the public key | ||
| 2970 | * from the server's certificate or the temporary RSA key provided in a | ||
| 2971 | * server key exchange message, and sends the result in an encrypted | ||
| 2972 | * premaster secret message. This structure is a variant of the client | ||
| 2973 | * key exchange message, not a message in itself. | ||
| 2974 | * | ||
| 2975 |  * struct { | ||
| 2976 |  *   select(KeyExchangeAlgorithm) { | ||
| 2977 | * case rsa: EncryptedPreMasterSecret; | ||
| 2978 | * case diffie_hellman: ClientDiffieHellmanPublic; | ||
| 2979 | * } exchange_keys; | ||
| 2980 | * } ClientKeyExchange; | ||
| 2981 | * | ||
| 2982 |  * struct { | ||
| 2983 | * ProtocolVersion client_version; | ||
| 2984 | * opaque random[46]; | ||
| 2985 | * } PreMasterSecret; | ||
| 2986 | * | ||
| 2987 |  * struct { | ||
| 2988 | * public-key-encrypted PreMasterSecret pre_master_secret; | ||
| 2989 | * } EncryptedPreMasterSecret; | ||
| 2990 | * | ||
| 2991 | * A public-key-encrypted element is encoded as a vector <0..2^16-1>. | ||
| 2992 | * | ||
| 2993 | * @param c the connection. | ||
| 2994 | * | ||
| 2995 | * @return the ClientKeyExchange byte buffer. | ||
| 2996 | */ | ||
| 2997 | tls.createClientKeyExchange = function(c) { | ||
| 2998 | // create buffer to encrypt | ||
| 2999 | var b = forge.util.createBuffer(); | ||
| 3000 | |||
| 3001 | // add highest client-supported protocol to help server avoid version | ||
| 3002 | // rollback attacks | ||
| 3003 | b.putByte(c.session.clientHelloVersion.major); | ||
| 3004 | b.putByte(c.session.clientHelloVersion.minor); | ||
| 3005 | |||
| 3006 | // generate and add 46 random bytes | ||
| 3007 | b.putBytes(forge.random.getBytes(46)); | ||
| 3008 | |||
| 3009 | // save pre-master secret | ||
| 3010 | var sp = c.session.sp; | ||
| 3011 | sp.pre_master_secret = b.getBytes(); | ||
| 3012 | |||
| 3013 | // RSA-encrypt the pre-master secret | ||
| 3014 | var key = c.session.serverCertificate.publicKey; | ||
| 3015 | b = key.encrypt(sp.pre_master_secret); | ||
| 3016 | |||
| 3017 | /* Note: The encrypted pre-master secret will be stored in a | ||
| 3018 | public-key-encrypted opaque vector that has the length prefixed using | ||
| 3019 | 2 bytes, so include those 2 bytes in the handshake message length. This | ||
| 3020 | is done as a minor optimization instead of calling writeVector(). */ | ||
| 3021 | |||
| 3022 | // determine length of the handshake message | ||
| 3023 | var length = b.length + 2; | ||
| 3024 | |||
| 3025 | // build record fragment | ||
| 3026 | var rval = forge.util.createBuffer(); | ||
| 3027 | rval.putByte(tls.HandshakeType.client_key_exchange); | ||
| 3028 | rval.putInt24(length); | ||
| 3029 | // add vector length bytes | ||
| 3030 | rval.putInt16(b.length); | ||
| 3031 | rval.putBytes(b); | ||
| 3032 | return rval; | ||
| 3033 | }; | ||
| 3034 | |||
| 3035 | /** | ||
| 3036 | * Creates a ServerKeyExchange message. | ||
| 3037 | * | ||
| 3038 | * @param c the connection. | ||
| 3039 | * | ||
| 3040 | * @return the ServerKeyExchange byte buffer. | ||
| 3041 | */ | ||
| 3042 | tls.createServerKeyExchange = function(c) { | ||
| 3043 | // this implementation only supports RSA, no Diffie-Hellman support, | ||
| 3044 | // so this record is empty | ||
| 3045 | |||
| 3046 | // determine length of the handshake message | ||
| 3047 | var length = 0; | ||
| 3048 | |||
| 3049 | // build record fragment | ||
| 3050 | var rval = forge.util.createBuffer(); | ||
| 3051 |   if(length > 0) { | ||
| 3052 | rval.putByte(tls.HandshakeType.server_key_exchange); | ||
| 3053 | rval.putInt24(length); | ||
| 3054 | } | ||
| 3055 | return rval; | ||
| 3056 | }; | ||
| 3057 | |||
| 3058 | /** | ||
| 3059 | * Gets the signed data used to verify a client-side certificate. See | ||
| 3060 | * tls.createCertificateVerify() for details. | ||
| 3061 | * | ||
| 3062 | * @param c the connection. | ||
| 3063 | * @param callback the callback to call once the signed data is ready. | ||
| 3064 | */ | ||
| 3065 | tls.getClientSignature = function(c, callback) { | ||
| 3066 | // generate data to RSA encrypt | ||
| 3067 | var b = forge.util.createBuffer(); | ||
| 3068 | b.putBuffer(c.session.md5.digest()); | ||
| 3069 | b.putBuffer(c.session.sha1.digest()); | ||
| 3070 | b = b.getBytes(); | ||
| 3071 | |||
| 3072 | // create default signing function as necessary | ||
| 3073 |   c.getSignature = c.getSignature || function(c, b, callback) { | ||
| 3074 | // do rsa encryption, call callback | ||
| 3075 | var privateKey = null; | ||
| 3076 |     if(c.getPrivateKey) { | ||
| 3077 |       try { | ||
| 3078 | privateKey = c.getPrivateKey(c, c.session.clientCertificate); | ||
| 3079 | privateKey = forge.pki.privateKeyFromPem(privateKey); | ||
| 3080 |       } catch(ex) { | ||
| 3081 |         c.error(c, { | ||
| 3082 | message: 'Could not get private key.', | ||
| 3083 | cause: ex, | ||
| 3084 | send: true, | ||
| 3085 |           alert: { | ||
| 3086 | level: tls.Alert.Level.fatal, | ||
| 3087 | description: tls.Alert.Description.internal_error | ||
| 3088 | } | ||
| 3089 | }); | ||
| 3090 | } | ||
| 3091 | } | ||
| 3092 |     if(privateKey === null) { | ||
| 3093 |       c.error(c, { | ||
| 3094 | message: 'No private key set.', | ||
| 3095 | send: true, | ||
| 3096 |         alert: { | ||
| 3097 | level: tls.Alert.Level.fatal, | ||
| 3098 | description: tls.Alert.Description.internal_error | ||
| 3099 | } | ||
| 3100 | }); | ||
| 3101 |     } else { | ||
| 3102 | b = privateKey.sign(b, null); | ||
| 3103 | } | ||
| 3104 | callback(c, b); | ||
| 3105 | }; | ||
| 3106 | |||
| 3107 | // get client signature | ||
| 3108 | c.getSignature(c, b, callback); | ||
| 3109 | }; | ||
| 3110 | |||
| 3111 | /** | ||
| 3112 | * Creates a CertificateVerify message. | ||
| 3113 | * | ||
| 3114 | * Meaning of this message: | ||
| 3115 | * This structure conveys the client's Diffie-Hellman public value | ||
| 3116 | * (Yc) if it was not already included in the client's certificate. | ||
| 3117 | * The encoding used for Yc is determined by the enumerated | ||
| 3118 | * PublicValueEncoding. This structure is a variant of the client | ||
| 3119 | * key exchange message, not a message in itself. | ||
| 3120 | * | ||
| 3121 | * When this message will be sent: | ||
| 3122 | * This message is used to provide explicit verification of a client | ||
| 3123 | * certificate. This message is only sent following a client | ||
| 3124 | * certificate that has signing capability (i.e. all certificates | ||
| 3125 | * except those containing fixed Diffie-Hellman parameters). When | ||
| 3126 | * sent, it will immediately follow the client key exchange message. | ||
| 3127 | * | ||
| 3128 |  * struct { | ||
| 3129 | * Signature signature; | ||
| 3130 | * } CertificateVerify; | ||
| 3131 | * | ||
| 3132 | * CertificateVerify.signature.md5_hash | ||
| 3133 | * MD5(handshake_messages); | ||
| 3134 | * | ||
| 3135 | * Certificate.signature.sha_hash | ||
| 3136 | * SHA(handshake_messages); | ||
| 3137 | * | ||
| 3138 | * Here handshake_messages refers to all handshake messages sent or | ||
| 3139 | * received starting at client hello up to but not including this | ||
| 3140 | * message, including the type and length fields of the handshake | ||
| 3141 | * messages. | ||
| 3142 | * | ||
| 3143 |  * select(SignatureAlgorithm) { | ||
| 3144 |  *   case anonymous: struct { }; | ||
| 3145 | * case rsa: | ||
| 3146 |  *     digitally-signed struct { | ||
| 3147 | * opaque md5_hash[16]; | ||
| 3148 | * opaque sha_hash[20]; | ||
| 3149 | * }; | ||
| 3150 | * case dsa: | ||
| 3151 |  *     digitally-signed struct { | ||
| 3152 | * opaque sha_hash[20]; | ||
| 3153 | * }; | ||
| 3154 | * } Signature; | ||
| 3155 | * | ||
| 3156 | * In digital signing, one-way hash functions are used as input for a | ||
| 3157 | * signing algorithm. A digitally-signed element is encoded as an opaque | ||
| 3158 | * vector <0..2^16-1>, where the length is specified by the signing | ||
| 3159 | * algorithm and key. | ||
| 3160 | * | ||
| 3161 | * In RSA signing, a 36-byte structure of two hashes (one SHA and one | ||
| 3162 | * MD5) is signed (encrypted with the private key). It is encoded with | ||
| 3163 | * PKCS #1 block type 0 or type 1 as described in [PKCS1]. | ||
| 3164 | * | ||
| 3165 | * In DSS, the 20 bytes of the SHA hash are run directly through the | ||
| 3166 | * Digital Signing Algorithm with no additional hashing. | ||
| 3167 | * | ||
| 3168 | * @param c the connection. | ||
| 3169 | * @param signature the signature to include in the message. | ||
| 3170 | * | ||
| 3171 | * @return the CertificateVerify byte buffer. | ||
| 3172 | */ | ||
| 3173 | tls.createCertificateVerify = function(c, signature) { | ||
| 3174 | /* Note: The signature will be stored in a "digitally-signed" opaque | ||
| 3175 | vector that has the length prefixed using 2 bytes, so include those | ||
| 3176 | 2 bytes in the handshake message length. This is done as a minor | ||
| 3177 | optimization instead of calling writeVector(). */ | ||
| 3178 | |||
| 3179 | // determine length of the handshake message | ||
| 3180 | var length = signature.length + 2; | ||
| 3181 | |||
| 3182 | // build record fragment | ||
| 3183 | var rval = forge.util.createBuffer(); | ||
| 3184 | rval.putByte(tls.HandshakeType.certificate_verify); | ||
| 3185 | rval.putInt24(length); | ||
| 3186 | // add vector length bytes | ||
| 3187 | rval.putInt16(signature.length); | ||
| 3188 | rval.putBytes(signature); | ||
| 3189 | return rval; | ||
| 3190 | }; | ||
| 3191 | |||
| 3192 | /** | ||
| 3193 | * Creates a CertificateRequest message. | ||
| 3194 | * | ||
| 3195 | * @param c the connection. | ||
| 3196 | * | ||
| 3197 | * @return the CertificateRequest byte buffer. | ||
| 3198 | */ | ||
| 3199 | tls.createCertificateRequest = function(c) { | ||
| 3200 | // TODO: support other certificate types | ||
| 3201 | var certTypes = forge.util.createBuffer(); | ||
| 3202 | |||
| 3203 | // common RSA certificate type | ||
| 3204 | certTypes.putByte(0x01); | ||
| 3205 | |||
| 3206 | // add distinguished names from CA store | ||
| 3207 | var cAs = forge.util.createBuffer(); | ||
| 3208 |   for(var key in c.caStore.certs) { | ||
| 3209 | var cert = c.caStore.certs[key]; | ||
| 3210 | var dn = forge.pki.distinguishedNameToAsn1(cert.subject); | ||
| 3211 | var byteBuffer = forge.asn1.toDer(dn); | ||
| 3212 | cAs.putInt16(byteBuffer.length()); | ||
| 3213 | cAs.putBuffer(byteBuffer); | ||
| 3214 | } | ||
| 3215 | |||
| 3216 | // TODO: TLS 1.2+ has a different format | ||
| 3217 | |||
| 3218 | // determine length of the handshake message | ||
| 3219 | var length = | ||
| 3220 | 1 + certTypes.length() + | ||
| 3221 | 2 + cAs.length(); | ||
| 3222 | |||
| 3223 | // build record fragment | ||
| 3224 | var rval = forge.util.createBuffer(); | ||
| 3225 | rval.putByte(tls.HandshakeType.certificate_request); | ||
| 3226 | rval.putInt24(length); | ||
| 3227 | writeVector(rval, 1, certTypes); | ||
| 3228 | writeVector(rval, 2, cAs); | ||
| 3229 | return rval; | ||
| 3230 | }; | ||
| 3231 | |||
| 3232 | /** | ||
| 3233 | * Creates a ServerHelloDone message. | ||
| 3234 | * | ||
| 3235 | * @param c the connection. | ||
| 3236 | * | ||
| 3237 | * @return the ServerHelloDone byte buffer. | ||
| 3238 | */ | ||
| 3239 | tls.createServerHelloDone = function(c) { | ||
| 3240 | // build record fragment | ||
| 3241 | var rval = forge.util.createBuffer(); | ||
| 3242 | rval.putByte(tls.HandshakeType.server_hello_done); | ||
| 3243 | rval.putInt24(0); | ||
| 3244 | return rval; | ||
| 3245 | }; | ||
| 3246 | |||
| 3247 | /** | ||
| 3248 | * Creates a ChangeCipherSpec message. | ||
| 3249 | * | ||
| 3250 | * The change cipher spec protocol exists to signal transitions in | ||
| 3251 | * ciphering strategies. The protocol consists of a single message, | ||
| 3252 | * which is encrypted and compressed under the current (not the pending) | ||
| 3253 | * connection state. The message consists of a single byte of value 1. | ||
| 3254 | * | ||
| 3255 |  * struct { | ||
| 3256 |  *   enum { change_cipher_spec(1), (255) } type; | ||
| 3257 | * } ChangeCipherSpec; | ||
| 3258 | * | ||
| 3259 | * @return the ChangeCipherSpec byte buffer. | ||
| 3260 | */ | ||
| 3261 | tls.createChangeCipherSpec = function() { | ||
| 3262 | var rval = forge.util.createBuffer(); | ||
| 3263 | rval.putByte(0x01); | ||
| 3264 | return rval; | ||
| 3265 | }; | ||
| 3266 | |||
| 3267 | /** | ||
| 3268 | * Creates a Finished message. | ||
| 3269 | * | ||
| 3270 |  * struct { | ||
| 3271 | * opaque verify_data[12]; | ||
| 3272 | * } Finished; | ||
| 3273 | * | ||
| 3274 | * verify_data | ||
| 3275 | * PRF(master_secret, finished_label, MD5(handshake_messages) + | ||
| 3276 | * SHA-1(handshake_messages)) [0..11]; | ||
| 3277 | * | ||
| 3278 | * finished_label | ||
| 3279 | * For Finished messages sent by the client, the string "client | ||
| 3280 | * finished". For Finished messages sent by the server, the | ||
| 3281 | * string "server finished". | ||
| 3282 | * | ||
| 3283 | * handshake_messages | ||
| 3284 | * All of the data from all handshake messages up to but not | ||
| 3285 | * including this message. This is only data visible at the | ||
| 3286 | * handshake layer and does not include record layer headers. | ||
| 3287 | * This is the concatenation of all the Handshake structures as | ||
| 3288 | * defined in 7.4 exchanged thus far. | ||
| 3289 | * | ||
| 3290 | * @param c the connection. | ||
| 3291 | * | ||
| 3292 | * @return the Finished byte buffer. | ||
| 3293 | */ | ||
| 3294 | tls.createFinished = function(c) { | ||
| 3295 | // generate verify_data | ||
| 3296 | var b = forge.util.createBuffer(); | ||
| 3297 | b.putBuffer(c.session.md5.digest()); | ||
| 3298 | b.putBuffer(c.session.sha1.digest()); | ||
| 3299 | |||
| 3300 | // TODO: determine prf function and verify length for TLS 1.2 | ||
| 3301 | var client = (c.entity === tls.ConnectionEnd.client); | ||
| 3302 | var sp = c.session.sp; | ||
| 3303 | var vdl = 12; | ||
| 3304 | var prf = prf_TLS1; | ||
| 3305 | var label = client ? 'client finished' : 'server finished'; | ||
| 3306 | b = prf(sp.master_secret, label, b.getBytes(), vdl); | ||
| 3307 | |||
| 3308 | // build record fragment | ||
| 3309 | var rval = forge.util.createBuffer(); | ||
| 3310 | rval.putByte(tls.HandshakeType.finished); | ||
| 3311 | rval.putInt24(b.length()); | ||
| 3312 | rval.putBuffer(b); | ||
| 3313 | return rval; | ||
| 3314 | }; | ||
| 3315 | |||
| 3316 | /** | ||
| 3317 | * Creates a HeartbeatMessage (See RFC 6520). | ||
| 3318 | * | ||
| 3319 |  * struct { | ||
| 3320 | * HeartbeatMessageType type; | ||
| 3321 | * uint16 payload_length; | ||
| 3322 | * opaque payload[HeartbeatMessage.payload_length]; | ||
| 3323 | * opaque padding[padding_length]; | ||
| 3324 | * } HeartbeatMessage; | ||
| 3325 | * | ||
| 3326 | * The total length of a HeartbeatMessage MUST NOT exceed 2^14 or | ||
| 3327 | * max_fragment_length when negotiated as defined in [RFC6066]. | ||
| 3328 | * | ||
| 3329 | * type: The message type, either heartbeat_request or heartbeat_response. | ||
| 3330 | * | ||
| 3331 | * payload_length: The length of the payload. | ||
| 3332 | * | ||
| 3333 | * payload: The payload consists of arbitrary content. | ||
| 3334 | * | ||
| 3335 | * padding: The padding is random content that MUST be ignored by the | ||
| 3336 | * receiver. The length of a HeartbeatMessage is TLSPlaintext.length | ||
| 3337 | * for TLS and DTLSPlaintext.length for DTLS. Furthermore, the | ||
| 3338 | * length of the type field is 1 byte, and the length of the | ||
| 3339 | * payload_length is 2. Therefore, the padding_length is | ||
| 3340 | * TLSPlaintext.length - payload_length - 3 for TLS and | ||
| 3341 | * DTLSPlaintext.length - payload_length - 3 for DTLS. The | ||
| 3342 | * padding_length MUST be at least 16. | ||
| 3343 | * | ||
| 3344 | * The sender of a HeartbeatMessage MUST use a random padding of at | ||
| 3345 | * least 16 bytes. The padding of a received HeartbeatMessage message | ||
| 3346 | * MUST be ignored. | ||
| 3347 | * | ||
| 3348 | * If the payload_length of a received HeartbeatMessage is too large, | ||
| 3349 | * the received HeartbeatMessage MUST be discarded silently. | ||
| 3350 | * | ||
| 3351 | * @param c the connection. | ||
| 3352 | * @param type the tls.HeartbeatMessageType. | ||
| 3353 | * @param payload the heartbeat data to send as the payload. | ||
| 3354 | * @param [payloadLength] the payload length to use, defaults to the | ||
| 3355 | * actual payload length. | ||
| 3356 | * | ||
| 3357 | * @return the HeartbeatRequest byte buffer. | ||
| 3358 | */ | ||
| 3359 | tls.createHeartbeat = function(type, payload, payloadLength) { | ||
| 3360 |   if(typeof payloadLength === 'undefined') { | ||
| 3361 | payloadLength = payload.length; | ||
| 3362 | } | ||
| 3363 | // build record fragment | ||
| 3364 | var rval = forge.util.createBuffer(); | ||
| 3365 | rval.putByte(type); // heartbeat message type | ||
| 3366 | rval.putInt16(payloadLength); // payload length | ||
| 3367 | rval.putBytes(payload); // payload | ||
| 3368 | // padding | ||
| 3369 | var plaintextLength = rval.length(); | ||
| 3370 | var paddingLength = Math.max(16, plaintextLength - payloadLength - 3); | ||
| 3371 | rval.putBytes(forge.random.getBytes(paddingLength)); | ||
| 3372 | return rval; | ||
| 3373 | }; | ||
| 3374 | |||
| 3375 | /** | ||
| 3376 | * Fragments, compresses, encrypts, and queues a record for delivery. | ||
| 3377 | * | ||
| 3378 | * @param c the connection. | ||
| 3379 | * @param record the record to queue. | ||
| 3380 | */ | ||
| 3381 | tls.queue = function(c, record) { | ||
| 3382 | // error during record creation | ||
| 3383 |   if(!record) { | ||
| 3384 | return; | ||
| 3385 | } | ||
| 3386 | |||
| 3387 |   if(record.fragment.length() === 0) { | ||
| 3388 | if(record.type === tls.ContentType.handshake || | ||
| 3389 | record.type === tls.ContentType.alert || | ||
| 3390 |       record.type === tls.ContentType.change_cipher_spec) { | ||
| 3391 | // Empty handshake, alert of change cipher spec messages are not allowed per the TLS specification and should not be sent. | ||
| 3392 | return; | ||
| 3393 | } | ||
| 3394 | } | ||
| 3395 | |||
| 3396 | // if the record is a handshake record, update handshake hashes | ||
| 3397 |   if(record.type === tls.ContentType.handshake) { | ||
| 3398 | var bytes = record.fragment.bytes(); | ||
| 3399 | c.session.md5.update(bytes); | ||
| 3400 | c.session.sha1.update(bytes); | ||
| 3401 | bytes = null; | ||
| 3402 | } | ||
| 3403 | |||
| 3404 | // handle record fragmentation | ||
| 3405 | var records; | ||
| 3406 |   if(record.fragment.length() <= tls.MaxFragment) { | ||
| 3407 | records = [record]; | ||
| 3408 |   } else { | ||
| 3409 | // fragment data as long as it is too long | ||
| 3410 | records = []; | ||
| 3411 | var data = record.fragment.bytes(); | ||
| 3412 |     while(data.length > tls.MaxFragment) { | ||
| 3413 |       records.push(tls.createRecord(c, { | ||
| 3414 | type: record.type, | ||
| 3415 | data: forge.util.createBuffer(data.slice(0, tls.MaxFragment)) | ||
| 3416 | })); | ||
| 3417 | data = data.slice(tls.MaxFragment); | ||
| 3418 | } | ||
| 3419 | // add last record | ||
| 3420 |     if(data.length > 0) { | ||
| 3421 |       records.push(tls.createRecord(c, { | ||
| 3422 | type: record.type, | ||
| 3423 | data: forge.util.createBuffer(data) | ||
| 3424 | })); | ||
| 3425 | } | ||
| 3426 | } | ||
| 3427 | |||
| 3428 | // compress and encrypt all fragmented records | ||
| 3429 |   for(var i = 0; i < records.length && !c.fail; ++i) { | ||
| 3430 | // update the record using current write state | ||
| 3431 | var rec = records[i]; | ||
| 3432 | var s = c.state.current.write; | ||
| 3433 |     if(s.update(c, rec)) { | ||
| 3434 | // store record | ||
| 3435 | c.records.push(rec); | ||
| 3436 | } | ||
| 3437 | } | ||
| 3438 | }; | ||
| 3439 | |||
| 3440 | /** | ||
| 3441 | * Flushes all queued records to the output buffer and calls the | ||
| 3442 | * tlsDataReady() handler on the given connection. | ||
| 3443 | * | ||
| 3444 | * @param c the connection. | ||
| 3445 | * | ||
| 3446 | * @return true on success, false on failure. | ||
| 3447 | */ | ||
| 3448 | tls.flush = function(c) { | ||
| 3449 |   for(var i = 0; i < c.records.length; ++i) { | ||
| 3450 | var record = c.records[i]; | ||
| 3451 | |||
| 3452 | // add record header and fragment | ||
| 3453 | c.tlsData.putByte(record.type); | ||
| 3454 | c.tlsData.putByte(record.version.major); | ||
| 3455 | c.tlsData.putByte(record.version.minor); | ||
| 3456 | c.tlsData.putInt16(record.fragment.length()); | ||
| 3457 | c.tlsData.putBuffer(c.records[i].fragment); | ||
| 3458 | } | ||
| 3459 | c.records = []; | ||
| 3460 | return c.tlsDataReady(c); | ||
| 3461 | }; | ||
| 3462 | |||
| 3463 | /** | ||
| 3464 | * Maps a pki.certificateError to a tls.Alert.Description. | ||
| 3465 | * | ||
| 3466 | * @param error the error to map. | ||
| 3467 | * | ||
| 3468 | * @return the alert description. | ||
| 3469 | */ | ||
| 3470 | var _certErrorToAlertDesc = function(error) { | ||
| 3471 |   switch(error) { | ||
| 3472 | case true: | ||
| 3473 | return true; | ||
| 3474 | case forge.pki.certificateError.bad_certificate: | ||
| 3475 | return tls.Alert.Description.bad_certificate; | ||
| 3476 | case forge.pki.certificateError.unsupported_certificate: | ||
| 3477 | return tls.Alert.Description.unsupported_certificate; | ||
| 3478 | case forge.pki.certificateError.certificate_revoked: | ||
| 3479 | return tls.Alert.Description.certificate_revoked; | ||
| 3480 | case forge.pki.certificateError.certificate_expired: | ||
| 3481 | return tls.Alert.Description.certificate_expired; | ||
| 3482 | case forge.pki.certificateError.certificate_unknown: | ||
| 3483 | return tls.Alert.Description.certificate_unknown; | ||
| 3484 | case forge.pki.certificateError.unknown_ca: | ||
| 3485 | return tls.Alert.Description.unknown_ca; | ||
| 3486 | default: | ||
| 3487 | return tls.Alert.Description.bad_certificate; | ||
| 3488 | } | ||
| 3489 | }; | ||
| 3490 | |||
| 3491 | /** | ||
| 3492 | * Maps a tls.Alert.Description to a pki.certificateError. | ||
| 3493 | * | ||
| 3494 | * @param desc the alert description. | ||
| 3495 | * | ||
| 3496 | * @return the certificate error. | ||
| 3497 | */ | ||
| 3498 | var _alertDescToCertError = function(desc) { | ||
| 3499 |   switch(desc) { | ||
| 3500 | case true: | ||
| 3501 | return true; | ||
| 3502 | case tls.Alert.Description.bad_certificate: | ||
| 3503 | return forge.pki.certificateError.bad_certificate; | ||
| 3504 | case tls.Alert.Description.unsupported_certificate: | ||
| 3505 | return forge.pki.certificateError.unsupported_certificate; | ||
| 3506 | case tls.Alert.Description.certificate_revoked: | ||
| 3507 | return forge.pki.certificateError.certificate_revoked; | ||
| 3508 | case tls.Alert.Description.certificate_expired: | ||
| 3509 | return forge.pki.certificateError.certificate_expired; | ||
| 3510 | case tls.Alert.Description.certificate_unknown: | ||
| 3511 | return forge.pki.certificateError.certificate_unknown; | ||
| 3512 | case tls.Alert.Description.unknown_ca: | ||
| 3513 | return forge.pki.certificateError.unknown_ca; | ||
| 3514 | default: | ||
| 3515 | return forge.pki.certificateError.bad_certificate; | ||
| 3516 | } | ||
| 3517 | }; | ||
| 3518 | |||
| 3519 | /** | ||
| 3520 | * Verifies a certificate chain against the given connection's | ||
| 3521 | * Certificate Authority store. | ||
| 3522 | * | ||
| 3523 | * @param c the TLS connection. | ||
| 3524 | * @param chain the certificate chain to verify, with the root or highest | ||
| 3525 | * authority at the end. | ||
| 3526 | * | ||
| 3527 | * @return true if successful, false if not. | ||
| 3528 | */ | ||
| 3529 | tls.verifyCertificateChain = function(c, chain) { | ||
| 3530 |   try { | ||
| 3531 | // Make a copy of c.verifyOptions so that we can modify options.verify | ||
| 3532 | // without modifying c.verifyOptions. | ||
| 3533 |     var options = {}; | ||
| 3534 |     for (var key in c.verifyOptions) { | ||
| 3535 | options[key] = c.verifyOptions[key]; | ||
| 3536 | } | ||
| 3537 | |||
| 3538 |     options.verify = function(vfd, depth, chain) { | ||
| 3539 | // convert pki.certificateError to tls alert description | ||
| 3540 | var desc = _certErrorToAlertDesc(vfd); | ||
| 3541 | |||
| 3542 | // call application callback | ||
| 3543 | var ret = c.verify(c, vfd, depth, chain); | ||
| 3544 |       if(ret !== true) { | ||
| 3545 |         if(typeof ret === 'object' && !forge.util.isArray(ret)) { | ||
| 3546 | // throw custom error | ||
| 3547 |           var error = new Error('The application rejected the certificate.'); | ||
| 3548 | error.send = true; | ||
| 3549 |           error.alert = { | ||
| 3550 | level: tls.Alert.Level.fatal, | ||
| 3551 | description: tls.Alert.Description.bad_certificate | ||
| 3552 | }; | ||
| 3553 |           if(ret.message) { | ||
| 3554 | error.message = ret.message; | ||
| 3555 | } | ||
| 3556 |           if(ret.alert) { | ||
| 3557 | error.alert.description = ret.alert; | ||
| 3558 | } | ||
| 3559 | throw error; | ||
| 3560 | } | ||
| 3561 | |||
| 3562 | // convert tls alert description to pki.certificateError | ||
| 3563 |         if(ret !== vfd) { | ||
| 3564 | ret = _alertDescToCertError(ret); | ||
| 3565 | } | ||
| 3566 | } | ||
| 3567 | |||
| 3568 | return ret; | ||
| 3569 | }; | ||
| 3570 | |||
| 3571 | // verify chain | ||
| 3572 | forge.pki.verifyCertificateChain(c.caStore, chain, options); | ||
| 3573 |   } catch(ex) { | ||
| 3574 | // build tls error if not already customized | ||
| 3575 | var err = ex; | ||
| 3576 |     if(typeof err !== 'object' || forge.util.isArray(err)) { | ||
| 3577 |       err = { | ||
| 3578 | send: true, | ||
| 3579 |         alert: { | ||
| 3580 | level: tls.Alert.Level.fatal, | ||
| 3581 | description: _certErrorToAlertDesc(ex) | ||
| 3582 | } | ||
| 3583 | }; | ||
| 3584 | } | ||
| 3585 |     if(!('send' in err)) { | ||
| 3586 | err.send = true; | ||
| 3587 | } | ||
| 3588 |     if(!('alert' in err)) { | ||
| 3589 |       err.alert = { | ||
| 3590 | level: tls.Alert.Level.fatal, | ||
| 3591 | description: _certErrorToAlertDesc(err.error) | ||
| 3592 | }; | ||
| 3593 | } | ||
| 3594 | |||
| 3595 | // send error | ||
| 3596 | c.error(c, err); | ||
| 3597 | } | ||
| 3598 | |||
| 3599 | return !c.fail; | ||
| 3600 | }; | ||
| 3601 | |||
| 3602 | /** | ||
| 3603 | * Creates a new TLS session cache. | ||
| 3604 | * | ||
| 3605 | * @param cache optional map of session ID to cached session. | ||
| 3606 | * @param capacity the maximum size for the cache (default: 100). | ||
| 3607 | * | ||
| 3608 | * @return the new TLS session cache. | ||
| 3609 | */ | ||
| 3610 | tls.createSessionCache = function(cache, capacity) { | ||
| 3611 | var rval = null; | ||
| 3612 | |||
| 3613 | // assume input is already a session cache object | ||
| 3614 |   if(cache && cache.getSession && cache.setSession && cache.order) { | ||
| 3615 | rval = cache; | ||
| 3616 |   } else { | ||
| 3617 | // create cache | ||
| 3618 |     rval = {}; | ||
| 3619 |     rval.cache = cache || {}; | ||
| 3620 | rval.capacity = Math.max(capacity || 100, 1); | ||
| 3621 | rval.order = []; | ||
| 3622 | |||
| 3623 | // store order for sessions, delete session overflow | ||
| 3624 |     for(var key in cache) { | ||
| 3625 |       if(rval.order.length <= capacity) { | ||
| 3626 | rval.order.push(key); | ||
| 3627 |       } else { | ||
| 3628 | delete cache[key]; | ||
| 3629 | } | ||
| 3630 | } | ||
| 3631 | |||
| 3632 | // get a session from a session ID (or get any session) | ||
| 3633 |     rval.getSession = function(sessionId) { | ||
| 3634 | var session = null; | ||
| 3635 | var key = null; | ||
| 3636 | |||
| 3637 | // if session ID provided, use it | ||
| 3638 |       if(sessionId) { | ||
| 3639 | key = forge.util.bytesToHex(sessionId); | ||
| 3640 |       } else if(rval.order.length > 0) { | ||
| 3641 | // get first session from cache | ||
| 3642 | key = rval.order[0]; | ||
| 3643 | } | ||
| 3644 | |||
| 3645 |       if(key !== null && key in rval.cache) { | ||
| 3646 | // get cached session and remove from cache | ||
| 3647 | session = rval.cache[key]; | ||
| 3648 | delete rval.cache[key]; | ||
| 3649 |         for(var i in rval.order) { | ||
| 3650 |           if(rval.order[i] === key) { | ||
| 3651 | rval.order.splice(i, 1); | ||
| 3652 | break; | ||
| 3653 | } | ||
| 3654 | } | ||
| 3655 | } | ||
| 3656 | |||
| 3657 | return session; | ||
| 3658 | }; | ||
| 3659 | |||
| 3660 | // set a session in the cache | ||
| 3661 |     rval.setSession = function(sessionId, session) { | ||
| 3662 | // remove session from cache if at capacity | ||
| 3663 |       if(rval.order.length === rval.capacity) { | ||
| 3664 | var key = rval.order.shift(); | ||
| 3665 | delete rval.cache[key]; | ||
| 3666 | } | ||
| 3667 | // add session to cache | ||
| 3668 | var key = forge.util.bytesToHex(sessionId); | ||
| 3669 | rval.order.push(key); | ||
| 3670 | rval.cache[key] = session; | ||
| 3671 | }; | ||
| 3672 | } | ||
| 3673 | |||
| 3674 | return rval; | ||
| 3675 | }; | ||
| 3676 | |||
| 3677 | /** | ||
| 3678 | * Creates a new TLS connection. | ||
| 3679 | * | ||
| 3680 | * See public createConnection() docs for more details. | ||
| 3681 | * | ||
| 3682 | * @param options the options for this connection. | ||
| 3683 | * | ||
| 3684 | * @return the new TLS connection. | ||
| 3685 | */ | ||
| 3686 | tls.createConnection = function(options) { | ||
| 3687 | var caStore = null; | ||
| 3688 |   if(options.caStore) { | ||
| 3689 | // if CA store is an array, convert it to a CA store object | ||
| 3690 |     if(forge.util.isArray(options.caStore)) { | ||
| 3691 | caStore = forge.pki.createCaStore(options.caStore); | ||
| 3692 |     } else { | ||
| 3693 | caStore = options.caStore; | ||
| 3694 | } | ||
| 3695 |   } else { | ||
| 3696 | // create empty CA store | ||
| 3697 | caStore = forge.pki.createCaStore(); | ||
| 3698 | } | ||
| 3699 | |||
| 3700 | // setup default cipher suites | ||
| 3701 | var cipherSuites = options.cipherSuites || null; | ||
| 3702 |   if(cipherSuites === null) { | ||
| 3703 | cipherSuites = []; | ||
| 3704 |     for(var key in tls.CipherSuites) { | ||
| 3705 | cipherSuites.push(tls.CipherSuites[key]); | ||
| 3706 | } | ||
| 3707 | } | ||
| 3708 | |||
| 3709 | // set default entity | ||
| 3710 | var entity = (options.server || false) ? | ||
| 3711 | tls.ConnectionEnd.server : tls.ConnectionEnd.client; | ||
| 3712 | |||
| 3713 | // create session cache if requested | ||
| 3714 | var sessionCache = options.sessionCache ? | ||
| 3715 | tls.createSessionCache(options.sessionCache) : null; | ||
| 3716 | |||
| 3717 | // create TLS connection | ||
| 3718 |   var c = { | ||
| 3719 |     version: {major: tls.Version.major, minor: tls.Version.minor}, | ||
| 3720 | entity: entity, | ||
| 3721 | sessionId: options.sessionId, | ||
| 3722 | caStore: caStore, | ||
| 3723 | sessionCache: sessionCache, | ||
| 3724 | cipherSuites: cipherSuites, | ||
| 3725 | connected: options.connected, | ||
| 3726 | virtualHost: options.virtualHost || null, | ||
| 3727 | verifyClient: options.verifyClient || false, | ||
| 3728 |     verify: options.verify || function(cn, vfd, dpth, cts) {return vfd;}, | ||
| 3729 |     verifyOptions: options.verifyOptions || {}, | ||
| 3730 | getCertificate: options.getCertificate || null, | ||
| 3731 | getPrivateKey: options.getPrivateKey || null, | ||
| 3732 | getSignature: options.getSignature || null, | ||
| 3733 | input: forge.util.createBuffer(), | ||
| 3734 | tlsData: forge.util.createBuffer(), | ||
| 3735 | data: forge.util.createBuffer(), | ||
| 3736 | tlsDataReady: options.tlsDataReady, | ||
| 3737 | dataReady: options.dataReady, | ||
| 3738 | heartbeatReceived: options.heartbeatReceived, | ||
| 3739 | closed: options.closed, | ||
| 3740 |     error: function(c, ex) { | ||
| 3741 | // set origin if not set | ||
| 3742 | ex.origin = ex.origin || | ||
| 3743 | ((c.entity === tls.ConnectionEnd.client) ? 'client' : 'server'); | ||
| 3744 | |||
| 3745 | // send TLS alert | ||
| 3746 |       if(ex.send) { | ||
| 3747 | tls.queue(c, tls.createAlert(c, ex.alert)); | ||
| 3748 | tls.flush(c); | ||
| 3749 | } | ||
| 3750 | |||
| 3751 | // error is fatal by default | ||
| 3752 | var fatal = (ex.fatal !== false); | ||
| 3753 |       if(fatal) { | ||
| 3754 | // set fail flag | ||
| 3755 | c.fail = true; | ||
| 3756 | } | ||
| 3757 | |||
| 3758 | // call error handler first | ||
| 3759 | options.error(c, ex); | ||
| 3760 | |||
| 3761 |       if(fatal) { | ||
| 3762 | // fatal error, close connection, do not clear fail | ||
| 3763 | c.close(false); | ||
| 3764 | } | ||
| 3765 | }, | ||
| 3766 | deflate: options.deflate || null, | ||
| 3767 | inflate: options.inflate || null | ||
| 3768 | }; | ||
| 3769 | |||
| 3770 | /** | ||
| 3771 | * Resets a closed TLS connection for reuse. Called in c.close(). | ||
| 3772 | * | ||
| 3773 | * @param clearFail true to clear the fail flag (default: true). | ||
| 3774 | */ | ||
| 3775 |   c.reset = function(clearFail) { | ||
| 3776 |     c.version = {major: tls.Version.major, minor: tls.Version.minor}; | ||
| 3777 | c.record = null; | ||
| 3778 | c.session = null; | ||
| 3779 | c.peerCertificate = null; | ||
| 3780 |     c.state = { | ||
| 3781 | pending: null, | ||
| 3782 | current: null | ||
| 3783 | }; | ||
| 3784 | c.expect = (c.entity === tls.ConnectionEnd.client) ? SHE : CHE; | ||
| 3785 | c.fragmented = null; | ||
| 3786 | c.records = []; | ||
| 3787 | c.open = false; | ||
| 3788 | c.handshakes = 0; | ||
| 3789 | c.handshaking = false; | ||
| 3790 | c.isConnected = false; | ||
| 3791 | c.fail = !(clearFail || typeof(clearFail) === 'undefined'); | ||
| 3792 | c.input.clear(); | ||
| 3793 | c.tlsData.clear(); | ||
| 3794 | c.data.clear(); | ||
| 3795 | c.state.current = tls.createConnectionState(c); | ||
| 3796 | }; | ||
| 3797 | |||
| 3798 | // do initial reset of connection | ||
| 3799 | c.reset(); | ||
| 3800 | |||
| 3801 | /** | ||
| 3802 | * Updates the current TLS engine state based on the given record. | ||
| 3803 | * | ||
| 3804 | * @param c the TLS connection. | ||
| 3805 | * @param record the TLS record to act on. | ||
| 3806 | */ | ||
| 3807 |   var _update = function(c, record) { | ||
| 3808 | // get record handler (align type in table by subtracting lowest) | ||
| 3809 | var aligned = record.type - tls.ContentType.change_cipher_spec; | ||
| 3810 | var handlers = ctTable[c.entity][c.expect]; | ||
| 3811 |     if(aligned in handlers) { | ||
| 3812 | handlers[aligned](c, record); | ||
| 3813 |     } else { | ||
| 3814 | // unexpected record | ||
| 3815 | tls.handleUnexpected(c, record); | ||
| 3816 | } | ||
| 3817 | }; | ||
| 3818 | |||
| 3819 | /** | ||
| 3820 | * Reads the record header and initializes the next record on the given | ||
| 3821 | * connection. | ||
| 3822 | * | ||
| 3823 | * @param c the TLS connection with the next record. | ||
| 3824 | * | ||
| 3825 | * @return 0 if the input data could be processed, otherwise the | ||
| 3826 | * number of bytes required for data to be processed. | ||
| 3827 | */ | ||
| 3828 |   var _readRecordHeader = function(c) { | ||
| 3829 | var rval = 0; | ||
| 3830 | |||
| 3831 | // get input buffer and its length | ||
| 3832 | var b = c.input; | ||
| 3833 | var len = b.length(); | ||
| 3834 | |||
| 3835 | // need at least 5 bytes to initialize a record | ||
| 3836 |     if(len < 5) { | ||
| 3837 | rval = 5 - len; | ||
| 3838 |     } else { | ||
| 3839 | // enough bytes for header | ||
| 3840 | // initialize record | ||
| 3841 |       c.record = { | ||
| 3842 | type: b.getByte(), | ||
| 3843 |         version: { | ||
| 3844 | major: b.getByte(), | ||
| 3845 | minor: b.getByte() | ||
| 3846 | }, | ||
| 3847 | length: b.getInt16(), | ||
| 3848 | fragment: forge.util.createBuffer(), | ||
| 3849 | ready: false | ||
| 3850 | }; | ||
| 3851 | |||
| 3852 | // check record version | ||
| 3853 | var compatibleVersion = (c.record.version.major === c.version.major); | ||
| 3854 |       if(compatibleVersion && c.session && c.session.version) { | ||
| 3855 | // session version already set, require same minor version | ||
| 3856 | compatibleVersion = (c.record.version.minor === c.version.minor); | ||
| 3857 | } | ||
| 3858 |       if(!compatibleVersion) { | ||
| 3859 |         c.error(c, { | ||
| 3860 | message: 'Incompatible TLS version.', | ||
| 3861 | send: true, | ||
| 3862 |           alert: { | ||
| 3863 | level: tls.Alert.Level.fatal, | ||
| 3864 | description: tls.Alert.Description.protocol_version | ||
| 3865 | } | ||
| 3866 | }); | ||
| 3867 | } | ||
| 3868 | } | ||
| 3869 | |||
| 3870 | return rval; | ||
| 3871 | }; | ||
| 3872 | |||
| 3873 | /** | ||
| 3874 | * Reads the next record's contents and appends its message to any | ||
| 3875 | * previously fragmented message. | ||
| 3876 | * | ||
| 3877 | * @param c the TLS connection with the next record. | ||
| 3878 | * | ||
| 3879 | * @return 0 if the input data could be processed, otherwise the | ||
| 3880 | * number of bytes required for data to be processed. | ||
| 3881 | */ | ||
| 3882 |   var _readRecord = function(c) { | ||
| 3883 | var rval = 0; | ||
| 3884 | |||
| 3885 | // ensure there is enough input data to get the entire record | ||
| 3886 | var b = c.input; | ||
| 3887 | var len = b.length(); | ||
| 3888 |     if(len < c.record.length) { | ||
| 3889 | // not enough data yet, return how much is required | ||
| 3890 | rval = c.record.length - len; | ||
| 3891 |     } else { | ||
| 3892 | // there is enough data to parse the pending record | ||
| 3893 | // fill record fragment and compact input buffer | ||
| 3894 | c.record.fragment.putBytes(b.getBytes(c.record.length)); | ||
| 3895 | b.compact(); | ||
| 3896 | |||
| 3897 | // update record using current read state | ||
| 3898 | var s = c.state.current.read; | ||
| 3899 |       if(s.update(c, c.record)) { | ||
| 3900 | // see if there is a previously fragmented message that the | ||
| 3901 | // new record's message fragment should be appended to | ||
| 3902 |         if(c.fragmented !== null) { | ||
| 3903 | // if the record type matches a previously fragmented | ||
| 3904 | // record, append the record fragment to it | ||
| 3905 |           if(c.fragmented.type === c.record.type) { | ||
| 3906 | // concatenate record fragments | ||
| 3907 | c.fragmented.fragment.putBuffer(c.record.fragment); | ||
| 3908 | c.record = c.fragmented; | ||
| 3909 |           } else { | ||
| 3910 | // error, invalid fragmented record | ||
| 3911 |             c.error(c, { | ||
| 3912 | message: 'Invalid fragmented record.', | ||
| 3913 | send: true, | ||
| 3914 |               alert: { | ||
| 3915 | level: tls.Alert.Level.fatal, | ||
| 3916 | description: | ||
| 3917 | tls.Alert.Description.unexpected_message | ||
| 3918 | } | ||
| 3919 | }); | ||
| 3920 | } | ||
| 3921 | } | ||
| 3922 | |||
| 3923 | // record is now ready | ||
| 3924 | c.record.ready = true; | ||
| 3925 | } | ||
| 3926 | } | ||
| 3927 | |||
| 3928 | return rval; | ||
| 3929 | }; | ||
| 3930 | |||
| 3931 | /** | ||
| 3932 | * Performs a handshake using the TLS Handshake Protocol, as a client. | ||
| 3933 | * | ||
| 3934 | * This method should only be called if the connection is in client mode. | ||
| 3935 | * | ||
| 3936 | * @param sessionId the session ID to use, null to start a new one. | ||
| 3937 | */ | ||
| 3938 |   c.handshake = function(sessionId) { | ||
| 3939 | // error to call this in non-client mode | ||
| 3940 |     if(c.entity !== tls.ConnectionEnd.client) { | ||
| 3941 | // not fatal error | ||
| 3942 |       c.error(c, { | ||
| 3943 | message: 'Cannot initiate handshake as a server.', | ||
| 3944 | fatal: false | ||
| 3945 | }); | ||
| 3946 |     } else if(c.handshaking) { | ||
| 3947 | // handshake is already in progress, fail but not fatal error | ||
| 3948 |       c.error(c, { | ||
| 3949 | message: 'Handshake already in progress.', | ||
| 3950 | fatal: false | ||
| 3951 | }); | ||
| 3952 |     } else { | ||
| 3953 | // clear fail flag on reuse | ||
| 3954 |       if(c.fail && !c.open && c.handshakes === 0) { | ||
| 3955 | c.fail = false; | ||
| 3956 | } | ||
| 3957 | |||
| 3958 | // now handshaking | ||
| 3959 | c.handshaking = true; | ||
| 3960 | |||
| 3961 | // default to blank (new session) | ||
| 3962 | sessionId = sessionId || ''; | ||
| 3963 | |||
| 3964 | // if a session ID was specified, try to find it in the cache | ||
| 3965 | var session = null; | ||
| 3966 |       if(sessionId.length > 0) { | ||
| 3967 |         if(c.sessionCache) { | ||
| 3968 | session = c.sessionCache.getSession(sessionId); | ||
| 3969 | } | ||
| 3970 | |||
| 3971 | // matching session not found in cache, clear session ID | ||
| 3972 |         if(session === null) { | ||
| 3973 | sessionId = ''; | ||
| 3974 | } | ||
| 3975 | } | ||
| 3976 | |||
| 3977 | // no session given, grab a session from the cache, if available | ||
| 3978 |       if(sessionId.length === 0 && c.sessionCache) { | ||
| 3979 | session = c.sessionCache.getSession(); | ||
| 3980 |         if(session !== null) { | ||
| 3981 | sessionId = session.id; | ||
| 3982 | } | ||
| 3983 | } | ||
| 3984 | |||
| 3985 | // set up session | ||
| 3986 |       c.session = { | ||
| 3987 | id: sessionId, | ||
| 3988 | version: null, | ||
| 3989 | cipherSuite: null, | ||
| 3990 | compressionMethod: null, | ||
| 3991 | serverCertificate: null, | ||
| 3992 | certificateRequest: null, | ||
| 3993 | clientCertificate: null, | ||
| 3994 |         sp: {}, | ||
| 3995 | md5: forge.md.md5.create(), | ||
| 3996 | sha1: forge.md.sha1.create() | ||
| 3997 | }; | ||
| 3998 | |||
| 3999 | // use existing session information | ||
| 4000 |       if(session) { | ||
| 4001 | // only update version on connection, session version not yet set | ||
| 4002 | c.version = session.version; | ||
| 4003 | c.session.sp = session.sp; | ||
| 4004 | } | ||
| 4005 | |||
| 4006 | // generate new client random | ||
| 4007 | c.session.sp.client_random = tls.createRandom().getBytes(); | ||
| 4008 | |||
| 4009 | // connection now open | ||
| 4010 | c.open = true; | ||
| 4011 | |||
| 4012 | // send hello | ||
| 4013 |       tls.queue(c, tls.createRecord(c, { | ||
| 4014 | type: tls.ContentType.handshake, | ||
| 4015 | data: tls.createClientHello(c) | ||
| 4016 | })); | ||
| 4017 | tls.flush(c); | ||
| 4018 | } | ||
| 4019 | }; | ||
| 4020 | |||
| 4021 | /** | ||
| 4022 | * Called when TLS protocol data has been received from somewhere and should | ||
| 4023 | * be processed by the TLS engine. | ||
| 4024 | * | ||
| 4025 | * @param data the TLS protocol data, as a string, to process. | ||
| 4026 | * | ||
| 4027 | * @return 0 if the data could be processed, otherwise the number of bytes | ||
| 4028 | * required for data to be processed. | ||
| 4029 | */ | ||
| 4030 |   c.process = function(data) { | ||
| 4031 | var rval = 0; | ||
| 4032 | |||
| 4033 | // buffer input data | ||
| 4034 |     if(data) { | ||
| 4035 | c.input.putBytes(data); | ||
| 4036 | } | ||
| 4037 | |||
| 4038 | // process next record if no failure, process will be called after | ||
| 4039 | // each record is handled (since handling can be asynchronous) | ||
| 4040 |     if(!c.fail) { | ||
| 4041 | // reset record if ready and now empty | ||
| 4042 | if(c.record !== null && | ||
| 4043 |         c.record.ready && c.record.fragment.isEmpty()) { | ||
| 4044 | c.record = null; | ||
| 4045 | } | ||
| 4046 | |||
| 4047 | // if there is no pending record, try to read record header | ||
| 4048 |       if(c.record === null) { | ||
| 4049 | rval = _readRecordHeader(c); | ||
| 4050 | } | ||
| 4051 | |||
| 4052 | // read the next record (if record not yet ready) | ||
| 4053 |       if(!c.fail && c.record !== null && !c.record.ready) { | ||
| 4054 | rval = _readRecord(c); | ||
| 4055 | } | ||
| 4056 | |||
| 4057 | // record ready to be handled, update engine state | ||
| 4058 |       if(!c.fail && c.record !== null && c.record.ready) { | ||
| 4059 | _update(c, c.record); | ||
| 4060 | } | ||
| 4061 | } | ||
| 4062 | |||
| 4063 | return rval; | ||
| 4064 | }; | ||
| 4065 | |||
| 4066 | /** | ||
| 4067 | * Requests that application data be packaged into a TLS record. The | ||
| 4068 | * tlsDataReady handler will be called when the TLS record(s) have been | ||
| 4069 | * prepared. | ||
| 4070 | * | ||
| 4071 | * @param data the application data, as a raw 'binary' encoded string, to | ||
| 4072 | * be sent; to send utf-16/utf-8 string data, use the return value | ||
| 4073 | * of util.encodeUtf8(str). | ||
| 4074 | * | ||
| 4075 | * @return true on success, false on failure. | ||
| 4076 | */ | ||
| 4077 |   c.prepare = function(data) { | ||
| 4078 |     tls.queue(c, tls.createRecord(c, { | ||
| 4079 | type: tls.ContentType.application_data, | ||
| 4080 | data: forge.util.createBuffer(data) | ||
| 4081 | })); | ||
| 4082 | return tls.flush(c); | ||
| 4083 | }; | ||
| 4084 | |||
| 4085 | /** | ||
| 4086 | * Requests that a heartbeat request be packaged into a TLS record for | ||
| 4087 | * transmission. The tlsDataReady handler will be called when TLS record(s) | ||
| 4088 | * have been prepared. | ||
| 4089 | * | ||
| 4090 | * When a heartbeat response has been received, the heartbeatReceived | ||
| 4091 | * handler will be called with the matching payload. This handler can | ||
| 4092 | * be used to clear a retransmission timer, etc. | ||
| 4093 | * | ||
| 4094 | * @param payload the heartbeat data to send as the payload in the message. | ||
| 4095 | * @param [payloadLength] the payload length to use, defaults to the | ||
| 4096 | * actual payload length. | ||
| 4097 | * | ||
| 4098 | * @return true on success, false on failure. | ||
| 4099 | */ | ||
| 4100 |   c.prepareHeartbeatRequest = function(payload, payloadLength) { | ||
| 4101 |     if(payload instanceof forge.util.ByteBuffer) { | ||
| 4102 | payload = payload.bytes(); | ||
| 4103 | } | ||
| 4104 |     if(typeof payloadLength === 'undefined') { | ||
| 4105 | payloadLength = payload.length; | ||
| 4106 | } | ||
| 4107 | c.expectedHeartbeatPayload = payload; | ||
| 4108 |     tls.queue(c, tls.createRecord(c, { | ||
| 4109 | type: tls.ContentType.heartbeat, | ||
| 4110 | data: tls.createHeartbeat( | ||
| 4111 | tls.HeartbeatMessageType.heartbeat_request, payload, payloadLength) | ||
| 4112 | })); | ||
| 4113 | return tls.flush(c); | ||
| 4114 | }; | ||
| 4115 | |||
| 4116 | /** | ||
| 4117 | * Closes the connection (sends a close_notify alert). | ||
| 4118 | * | ||
| 4119 | * @param clearFail true to clear the fail flag (default: true). | ||
| 4120 | */ | ||
| 4121 |   c.close = function(clearFail) { | ||
| 4122 | // save session if connection didn't fail | ||
| 4123 |     if(!c.fail && c.sessionCache && c.session) { | ||
| 4124 | // only need to preserve session ID, version, and security params | ||
| 4125 |       var session = { | ||
| 4126 | id: c.session.id, | ||
| 4127 | version: c.session.version, | ||
| 4128 | sp: c.session.sp | ||
| 4129 | }; | ||
| 4130 | session.sp.keys = null; | ||
| 4131 | c.sessionCache.setSession(session.id, session); | ||
| 4132 | } | ||
| 4133 | |||
| 4134 |     if(c.open) { | ||
| 4135 | // connection no longer open, clear input | ||
| 4136 | c.open = false; | ||
| 4137 | c.input.clear(); | ||
| 4138 | |||
| 4139 | // if connected or handshaking, send an alert | ||
| 4140 |       if(c.isConnected || c.handshaking) { | ||
| 4141 | c.isConnected = c.handshaking = false; | ||
| 4142 | |||
| 4143 | // send close_notify alert | ||
| 4144 |         tls.queue(c, tls.createAlert(c, { | ||
| 4145 | level: tls.Alert.Level.warning, | ||
| 4146 | description: tls.Alert.Description.close_notify | ||
| 4147 | })); | ||
| 4148 | tls.flush(c); | ||
| 4149 | } | ||
| 4150 | |||
| 4151 | // call handler | ||
| 4152 | c.closed(c); | ||
| 4153 | } | ||
| 4154 | |||
| 4155 | // reset TLS connection, do not clear fail flag | ||
| 4156 | c.reset(clearFail); | ||
| 4157 | }; | ||
| 4158 | |||
| 4159 | return c; | ||
| 4160 | }; | ||
| 4161 | |||
| 4162 | /* TLS API */ | ||
| 4163 | module.exports = forge.tls = forge.tls || {}; | ||
| 4164 | |||
| 4165 | // expose non-functions | ||
| 4166 | for(var key in tls) { | ||
| 4167 |   if(typeof tls[key] !== 'function') { | ||
| 4168 | forge.tls[key] = tls[key]; | ||
| 4169 | } | ||
| 4170 | } | ||
| 4171 | |||
| 4172 | // expose prf_tls1 for testing | ||
| 4173 | forge.tls.prf_tls1 = prf_TLS1; | ||
| 4174 | |||
| 4175 | // expose sha1 hmac method | ||
| 4176 | forge.tls.hmac_sha1 = hmac_sha1; | ||
| 4177 | |||
| 4178 | // expose session cache creation | ||
| 4179 | forge.tls.createSessionCache = tls.createSessionCache; | ||
| 4180 | |||
| 4181 | /** | ||
| 4182 | * Creates a new TLS connection. This does not make any assumptions about the | ||
| 4183 | * transport layer that TLS is working on top of, ie: it does not assume there | ||
| 4184 | * is a TCP/IP connection or establish one. A TLS connection is totally | ||
| 4185 | * abstracted away from the layer is runs on top of, it merely establishes a | ||
| 4186 | * secure channel between a client" and a "server". | ||
| 4187 | * | ||
| 4188 | * A TLS connection contains 4 connection states: pending read and write, and | ||
| 4189 | * current read and write. | ||
| 4190 | * | ||
| 4191 | * At initialization, the current read and write states will be null. Only once | ||
| 4192 | * the security parameters have been set and the keys have been generated can | ||
| 4193 | * the pending states be converted into current states. Current states will be | ||
| 4194 | * updated for each record processed. | ||
| 4195 | * | ||
| 4196 | * A custom certificate verify callback may be provided to check information | ||
| 4197 | * like the common name on the server's certificate. It will be called for | ||
| 4198 | * every certificate in the chain. It has the following signature: | ||
| 4199 | * | ||
| 4200 | * variable func(c, certs, index, preVerify) | ||
| 4201 | * Where: | ||
| 4202 | * c The TLS connection | ||
| 4203 | * verified Set to true if certificate was verified, otherwise the alert | ||
| 4204 | * tls.Alert.Description for why the certificate failed. | ||
| 4205 | * depth The current index in the chain, where 0 is the server's cert. | ||
| 4206 | * certs The certificate chain, *NOTE* if the server was anonymous then | ||
| 4207 | * the chain will be empty. | ||
| 4208 | * | ||
| 4209 | * The function returns true on success and on failure either the appropriate | ||
| 4210 | * tls.Alert.Description or an object with 'alert' set to the appropriate | ||
| 4211 | * tls.Alert.Description and 'message' set to a custom error message. If true | ||
| 4212 | * is not returned then the connection will abort using, in order of | ||
| 4213 | * availability, first the returned alert description, second the preVerify | ||
| 4214 | * alert description, and lastly the default 'bad_certificate'. | ||
| 4215 | * | ||
| 4216 | * There are three callbacks that can be used to make use of client-side | ||
| 4217 | * certificates where each takes the TLS connection as the first parameter: | ||
| 4218 | * | ||
| 4219 | * getCertificate(conn, hint) | ||
| 4220 | * The second parameter is a hint as to which certificate should be | ||
| 4221 | * returned. If the connection entity is a client, then the hint will be | ||
| 4222 | * the CertificateRequest message from the server that is part of the | ||
| 4223 | * TLS protocol. If the connection entity is a server, then it will be | ||
| 4224 | * the servername list provided via an SNI extension the ClientHello, if | ||
| 4225 | * one was provided (empty array if not). The hint can be examined to | ||
| 4226 | * determine which certificate to use (advanced). Most implementations | ||
| 4227 | * will just return a certificate. The return value must be a | ||
| 4228 | * PEM-formatted certificate or an array of PEM-formatted certificates | ||
| 4229 | * that constitute a certificate chain, with the first in the array/chain | ||
| 4230 | * being the client's certificate. | ||
| 4231 | * getPrivateKey(conn, certificate) | ||
| 4232 | * The second parameter is an forge.pki X.509 certificate object that | ||
| 4233 | * is associated with the requested private key. The return value must | ||
| 4234 | * be a PEM-formatted private key. | ||
| 4235 | * getSignature(conn, bytes, callback) | ||
| 4236 | * This callback can be used instead of getPrivateKey if the private key | ||
| 4237 | * is not directly accessible in javascript or should not be. For | ||
| 4238 | * instance, a secure external web service could provide the signature | ||
| 4239 | * in exchange for appropriate credentials. The second parameter is a | ||
| 4240 | * string of bytes to be signed that are part of the TLS protocol. These | ||
| 4241 | * bytes are used to verify that the private key for the previously | ||
| 4242 | * provided client-side certificate is accessible to the client. The | ||
| 4243 | * callback is a function that takes 2 parameters, the TLS connection | ||
| 4244 | * and the RSA encrypted (signed) bytes as a string. This callback must | ||
| 4245 | * be called once the signature is ready. | ||
| 4246 | * | ||
| 4247 | * @param options the options for this connection: | ||
| 4248 | * server: true if the connection is server-side, false for client. | ||
| 4249 | * sessionId: a session ID to reuse, null for a new connection. | ||
| 4250 | * caStore: an array of certificates to trust. | ||
| 4251 | * sessionCache: a session cache to use. | ||
| 4252 | * cipherSuites: an optional array of cipher suites to use, | ||
| 4253 | * see tls.CipherSuites. | ||
| 4254 | * connected: function(conn) called when the first handshake completes. | ||
| 4255 | * virtualHost: the virtual server name to use in a TLS SNI extension. | ||
| 4256 | * verifyClient: true to require a client certificate in server mode, | ||
| 4257 | * 'optional' to request one, false not to (default: false). | ||
| 4258 | * verify: a handler used to custom verify certificates in the chain. | ||
| 4259 | * verifyOptions: an object with options for the certificate chain validation. | ||
| 4260 | * See documentation of pki.verifyCertificateChain for possible options. | ||
| 4261 | * verifyOptions.verify is ignored. If you wish to specify a verify handler | ||
| 4262 | * use the verify key. | ||
| 4263 | * getCertificate: an optional callback used to get a certificate or | ||
| 4264 | * a chain of certificates (as an array). | ||
| 4265 | * getPrivateKey: an optional callback used to get a private key. | ||
| 4266 | * getSignature: an optional callback used to get a signature. | ||
| 4267 | * tlsDataReady: function(conn) called when TLS protocol data has been | ||
| 4268 | * prepared and is ready to be used (typically sent over a socket | ||
| 4269 | * connection to its destination), read from conn.tlsData buffer. | ||
| 4270 | * dataReady: function(conn) called when application data has | ||
| 4271 | * been parsed from a TLS record and should be consumed by the | ||
| 4272 | * application, read from conn.data buffer. | ||
| 4273 | * closed: function(conn) called when the connection has been closed. | ||
| 4274 | * error: function(conn, error) called when there was an error. | ||
| 4275 | * deflate: function(inBytes) if provided, will deflate TLS records using | ||
| 4276 | * the deflate algorithm if the server supports it. | ||
| 4277 | * inflate: function(inBytes) if provided, will inflate TLS records using | ||
| 4278 | * the deflate algorithm if the server supports it. | ||
| 4279 | * | ||
| 4280 | * @return the new TLS connection. | ||
| 4281 | */ | ||
| 4282 | forge.tls.createConnection = tls.createConnection; | ||
| 4283 |