IAA-CSIC /
MUTIS
| 1 | # Licensed under a 3-clause BSD style license - see LICENSE |
||
| 2 | """Synthetic generation of light curves.""" |
||
| 3 | |||
| 4 | import logging |
||
| 5 | |||
| 6 | import matplotlib.pyplot as plt |
||
| 7 | import numpy as np |
||
| 8 | import scipy.optimize as scipy_optimize |
||
| 9 | import scipy.signal as scipy_signal |
||
| 10 | import scipy.special as scipy_special |
||
| 11 | import scipy.stats as scipy_stats |
||
| 12 | from matplotlib.offsetbox import AnchoredText |
||
| 13 | |||
| 14 | from mutis.lib.signal import * |
||
| 15 | |||
| 16 | __all__ = ["Signal"] |
||
| 17 | |||
| 18 | log = logging.getLogger(__name__) |
||
| 19 | |||
| 20 | |||
| 21 | class Signal: |
||
| 22 | """Analysis and generation of a signal. |
||
| 23 | |||
| 24 | Class for a generic signal. |
||
| 25 | |||
| 26 | Attributes |
||
| 27 | ---------- |
||
| 28 | times : :class:`numpy.ndarray` or :class:`pandas.Series` |
||
| 29 | Values of the time axis. |
||
| 30 | values : :class:`numpy.ndarray` or :class:`pandas.Series` |
||
| 31 | Values of the signal axis. |
||
| 32 | dvalues : :class:`numpy.ndarray` or :class:`pandas.Series` |
||
| 33 | Uncertainties on the values of the signal axis. |
||
| 34 | |||
| 35 | Other Attributes |
||
| 36 | ---------------- |
||
| 37 | |||
| 38 | fgen : :class:`str` |
||
| 39 | Method to generate the synthetic signal. |
||
| 40 | |||
| 41 | synth : :class:`numpy.ndarray` |
||
| 42 | Synthetic signals generated with `fgen`. |
||
| 43 | |||
| 44 | OU_theta : :class:`float` |
||
| 45 | (For OU method) Parameter theta of the OU process. |
||
| 46 | OU_mu : :class:`float` |
||
| 47 | (For OU method) Parameter mu of the OU process. |
||
| 48 | OU_sigma : :class:`float` |
||
| 49 | (For OU method) Parameter sigma of the OU process. |
||
| 50 | """ |
||
| 51 | |||
| 52 | def __init__(self, times, values, dvalues=None, fgen=None): |
||
| 53 | |||
|
0 ignored issues
–
show
Coding Style
introduced
by
Loading history...
|
|||
| 54 | self.times = np.array(times, dtype=np.float64) |
||
| 55 | self.values = np.array(values, dtype=np.float64) |
||
| 56 | self.fgen = fgen |
||
| 57 | |||
| 58 | self.dvalues = np.array(dvalues, dtype=np.float64) if dvalues is not None else None |
||
| 59 | self.synth = None |
||
| 60 | |||
| 61 | # TODO make attributes below specific of OU method / not the entire class |
||
| 62 | self.OU_theta = None |
||
| 63 | self.OU_mu = None |
||
| 64 | self.OU_sigma = None |
||
| 65 | |||
| 66 | def plot(self, ax=None): |
||
| 67 | if ax is None: |
||
| 68 | ax = plt.gca() |
||
| 69 | return ax.plot(self.times, self.values, ".-", lw=1, alpha=0.7) |
||
| 70 | |||
| 71 | def gen_synth(self, samples): |
||
| 72 | """Generate synthethic light curves for this signal. |
||
| 73 | |||
|
0 ignored issues
–
show
|
|||
| 74 | Generated curves are saved in `self.synth`. The times used are the same |
||
| 75 | of this signal. |
||
| 76 | |||
|
0 ignored issues
–
show
|
|||
| 77 | Parameters |
||
| 78 | ---------- |
||
| 79 | samples: :int: number of samples to generate. |
||
| 80 | |||
|
0 ignored issues
–
show
|
|||
| 81 | """ |
||
| 82 | |||
| 83 | self.synth = np.empty((samples, self.times.size)) |
||
| 84 | for n in range(samples): |
||
| 85 | self.synth[n] = fgen_wrapper(fgen=self.fgen, t=self.times, y=self.values, |
||
| 86 | fgen_params={'theta':self.OU_theta, 'mu':self.OU_mu, 'sigma':self.OU_sigma}) |
||
|
0 ignored issues
–
show
|
|||
| 87 | |||
| 88 | |||
| 89 | def OU_fit(self, bins=None, rang=None, a=1e-5, b=100): |
||
| 90 | """Fit the signal to an OU stochastic process, using several statistical approaches. |
||
| 91 | |||
| 92 | This function tries to fit the signal to an OU stochastic |
||
| 93 | process using both basic curve fitting and the Maximum |
||
| 94 | Likelihood Estimation method, and returns some plots of |
||
| 95 | the signals and its properties, and the estimated parameters. |
||
| 96 | """ |
||
| 97 | |||
| 98 | # TODO: make a generic fit method |
||
| 99 | res = dict() |
||
| 100 | |||
| 101 | y = self.values |
||
| 102 | t = self.times |
||
| 103 | |||
| 104 | dy = np.diff(y) |
||
| 105 | dt = np.diff(t) |
||
| 106 | |||
| 107 | # estimate sigma |
||
| 108 | try: |
||
| 109 | sigma_est = (np.nanmean(dy ** 2 / y[:-1] ** 2 / dt)) ** 0.5 |
||
| 110 | res["sigma_est"] = sigma_est |
||
| 111 | except Exception as e: |
||
| 112 | log.error(f"Could not estimate sigma: {e}") |
||
| 113 | |||
| 114 | # plot histogram |
||
| 115 | if bins is None: |
||
| 116 | bins = int(y.size ** 0.5 / 1.5) # bins='auto' |
||
| 117 | if rang is None: |
||
| 118 | rang = (np.percentile(y, 0), np.percentile(y, 99)) |
||
| 119 | |||
| 120 | p, x = np.histogram(y, density=True, bins=bins, range=rang) # bins='sqrt') |
||
| 121 | x = (x + np.roll(x, -1))[:-1] / 2.0 |
||
| 122 | |||
| 123 | plt.subplots() |
||
| 124 | |||
| 125 | plt.hist(y, density=True, alpha=0.75, bins=bins, range=rang) |
||
| 126 | plt.plot(x, p, "r-", alpha=0.5) |
||
| 127 | |||
| 128 | anchored_text = AnchoredText( |
||
| 129 | f"mean {np.mean(y):.2g} \n " |
||
| 130 | f"median {np.median(y):.2g} \n " |
||
| 131 | f"mode {scipy_stats.mode(y)[0]:.2g} \n " |
||
| 132 | f"std {np.std(y):.2g} \n " |
||
| 133 | f"var {np.var(y):.2g}", |
||
| 134 | loc="upper right", |
||
| 135 | ) |
||
| 136 | plt.gca().add_artist(anchored_text) |
||
| 137 | |||
| 138 | # curve_fit |
||
| 139 | try: |
||
| 140 | popt, pcov = scipy_optimize.curve_fit(f=self.pdf, xdata=x, ydata=p) |
||
| 141 | # print('curve_fit: (l, mu)') |
||
| 142 | # print('popt: ') |
||
| 143 | # print(popt) |
||
| 144 | # print('pcov: ') |
||
| 145 | # print(np.sqrt(np.diag(pcov))) |
||
| 146 | x_c = np.linspace(1e-5, 1.1 * np.max(x), 1000) |
||
| 147 | plt.plot(x_c, self.pdf(x_c, *popt), "k-", label="curve_fit", alpha=0.8) |
||
| 148 | res["curve_fit"] = (popt, np.sqrt(np.diag(pcov))) |
||
| 149 | except Exception as e: |
||
| 150 | log.error(f"Some error fitting with curve_fit {e}") |
||
| 151 | |||
| 152 | # fit pdf with MLE |
||
| 153 | # TODO: place outside as a helper class |
||
| 154 | # mu here is different than self.mu |
||
| 155 | class OU(scipy_stats.rv_continuous): |
||
| 156 | def _pdf(self, x, l, mu): |
||
| 157 | return ( |
||
| 158 | (l * mu) ** (1 + l) |
||
| 159 | / scipy_special.gamma(1 + l) |
||
| 160 | * np.exp(-l * mu / x) |
||
| 161 | / x ** (l + 2) |
||
| 162 | ) |
||
| 163 | |||
| 164 | try: |
||
| 165 | fit = OU(a=a, b=np.percentile(y, b)).fit(y, 1, 1, floc=0, fscale=1) |
||
| 166 | # print('MLE fit: (l, mu)') |
||
| 167 | # print(fit) |
||
| 168 | x_c = np.linspace(0, 1.1 * np.max(x), 1000) |
||
| 169 | plt.plot(x_c, self.pdf(x_c, fit[0], fit[1]), "k-.", label="MLE", alpha=0.8) |
||
| 170 | res["MLE_fit"] = fit[:-2] |
||
| 171 | except Exception as e: |
||
| 172 | log.error(f"Some error fitting with MLE {e}") |
||
| 173 | |||
| 174 | plt.legend(loc="lower right") |
||
| 175 | # plt.show() |
||
| 176 | |||
| 177 | # estimate theta (from curve_fit) |
||
| 178 | try: |
||
| 179 | res["th_est1"] = fit[0] * sigma_est ** 2 / 2 |
||
| 180 | except NameError as e: |
||
| 181 | res["th_est1"] = None |
||
| 182 | |||
| 183 | # estimate theta (from MLE) |
||
| 184 | try: |
||
| 185 | res["th_est2"] = popt[0] * sigma_est ** 2 / 2 |
||
| 186 | except NameError as e: |
||
| 187 | res["th_est2"] = None |
||
| 188 | |||
| 189 | return res |
||
| 190 | |||
|
0 ignored issues
–
show
|
|||
| 191 | |||
|
0 ignored issues
–
show
|
|||
| 192 | def check_gen(self, fgen=None, fgen_params=None, fpsd="lombscargle", **axes): |
||
| 193 | """Check the generation of synthetic signals. |
||
| 194 | |||
| 195 | This function checks the generation of a synthetic light curve. |
||
| 196 | |||
|
0 ignored issues
–
show
|
|||
| 197 | Parameters |
||
| 198 | ---------- |
||
| 199 | fgen: :str: |
||
| 200 | A valid fgen method name. |
||
| 201 | fgen_params: :dict: |
||
| 202 | Parameters for fgen (e.g. for fgen='lc_gen_ou', a dict containing |
||
| 203 | values for theta, mu and sigma). |
||
| 204 | |||
| 205 | Returns |
||
| 206 | ------- |
||
| 207 | axes: :tuple: |
||
| 208 | Tuple of three axes, on which: |
||
| 209 | - The first plot show both the original signal and the synthetic one. |
||
| 210 | - The second plot shows the histogram of the values taken by both signals. |
||
| 211 | - The third plot shows their PSD. |
||
| 212 | """ |
||
| 213 | |||
|
0 ignored issues
–
show
|
|||
| 214 | t, y = self.times, self.values |
||
| 215 | |||
| 216 | y2 = fgen_wrapper(fgen=fgen, t=t, y=y, fgen_params=fgen_params) |
||
| 217 | |||
|
0 ignored issues
–
show
|
|||
| 218 | print(f"Original vs Synthethic:", |
||
|
0 ignored issues
–
show
|
|||
| 219 | f"mean: {np.mean(y)} / {np.mean(y2)}", |
||
| 220 | f"std: {np.std(y)} / {np.std(y2)}", sep='\n') |
||
| 221 | |||
|
0 ignored issues
–
show
|
|||
| 222 | if ("ax1" not in axes) or ("ax2" not in axes) or ("ax3" not in axes): |
||
| 223 | fig, (axes["ax1"], axes["ax2"], axes["ax3"]) = plt.subplots( |
||
| 224 | nrows=1, ncols=3, figsize=(20, 4) |
||
| 225 | ) |
||
| 226 | |||
| 227 | # plot the two signals |
||
| 228 | axes["ax1"].plot(t, y, "b-", label="orig", lw=0.5, alpha=0.8) |
||
| 229 | |||
| 230 | # ax1p = ax1.twinx() |
||
| 231 | axes["ax1"].plot(t, y2, "r-", label="gen", lw=0.5, alpha=0.8) |
||
| 232 | axes["ax1"].set_title("light curves") |
||
| 233 | |||
| 234 | # plot their histogram |
||
| 235 | bins = "auto" # bins = int(y.size**0.5/1.5) # |
||
| 236 | rang = (np.percentile(y, 0), np.percentile(y, 99)) |
||
| 237 | axes["ax2"].hist(y, density=True, color="b", alpha=0.4, bins=bins, range=rang) |
||
| 238 | |||
| 239 | # ax2p = ax2.twinx() |
||
| 240 | bins = "auto" # bins = int(y.size**0.5/1.5) # |
||
| 241 | rang = (np.percentile(y2, 0), np.percentile(y2, 99)) |
||
| 242 | axes["ax2"].hist(y2, density=True, color="r", alpha=0.4, bins=bins, range=rang) |
||
| 243 | |||
| 244 | axes["ax2"].set_title("pdf") |
||
| 245 | |||
| 246 | # plot their PSD |
||
| 247 | if fpsd == "lombscargle": |
||
| 248 | k = np.linspace(1e-3, self.values.size / 2, self.values.size // 2) |
||
| 249 | freqs = k / 2 / np.pi |
||
| 250 | |||
| 251 | pxx = scipy_signal.lombscargle(t, y, freqs, normalize=True) |
||
| 252 | axes["ax3"].plot(freqs, pxx, "b-", lw=1, alpha=0.5) |
||
| 253 | |||
| 254 | pxx2 = scipy_signal.lombscargle(t, y2, freqs, normalize=True) |
||
| 255 | axes["ax3"].plot(freqs, pxx2, "r-", lw=1, alpha=0.5) |
||
| 256 | |||
| 257 | axes["ax3"].set_xscale("log") |
||
| 258 | # ax3.set_yscale('log') |
||
| 259 | else: |
||
| 260 | axes["ax3"].psd(y, color="b", lw=1, alpha=0.5) |
||
| 261 | |||
| 262 | ax3p = axes["ax3"].twinx() |
||
| 263 | ax3p.psd(y2, color="r", lw=1, alpha=0.5) |
||
| 264 | |||
| 265 | axes["ax3"].set_title("PSD") |
||
| 266 | |||
| 267 | return axes |
||
| 268 | |||
|
0 ignored issues
–
show
|
|||
| 269 | |||
|
0 ignored issues
–
show
|
|||
| 270 | |||
|
0 ignored issues
–
show
|
|||
| 271 | @staticmethod |
||
| 272 | def pdf(xx, ll, mu): |
||
| 273 | """Helper func to fit pdf as a curve.""" |
||
| 274 | return ( |
||
| 275 | (ll * mu) ** (1 + ll) |
||
| 276 | / scipy_special.gamma(1 + ll) |
||
| 277 | * np.exp(-ll * mu / xx) |
||
| 278 | / xx ** (ll + 2) |
||
| 279 | ) |
||
| 280 |