1
|
|
|
# Licensed under a 3-clause BSD style license - see LICENSE |
2
|
|
|
"""Methods for synthetic generation of light curves.""" |
3
|
|
|
|
4
|
|
|
import logging |
5
|
|
|
|
6
|
|
|
import nfft |
|
|
|
|
7
|
|
|
import numpy as np |
|
|
|
|
8
|
|
|
import scipy.signal as scipy_signal |
|
|
|
|
9
|
|
|
|
10
|
|
|
__all__ = [ |
11
|
|
|
"lc_gen_samp", |
12
|
|
|
"lc_gen_psd_nft", |
13
|
|
|
"lc_gen_ou", |
14
|
|
|
"lc_gen_psd_lombscargle", |
15
|
|
|
"lc_gen_psd_fft", |
16
|
|
|
] |
17
|
|
|
|
18
|
|
|
log = logging.getLogger(__name__) |
19
|
|
|
|
20
|
|
|
|
21
|
|
|
def lc_gen_samp(signs): |
22
|
|
|
"""Generation by sampling np.random.choice with same mean and std""" |
23
|
|
|
|
24
|
|
|
return np.random.choice(signs, signs.size) |
25
|
|
|
|
26
|
|
|
|
27
|
|
|
def lc_gen_ou(theta, mu, sigma, times, scale=None, loc=None): |
|
|
|
|
28
|
|
|
"""Generation from an OU process integrating the stochastic differential equation.""" |
29
|
|
|
|
30
|
|
|
width = 100 * times.size |
31
|
|
|
dt = (max(times) - min(times)) / width |
|
|
|
|
32
|
|
|
s2 = np.empty(times.size) |
|
|
|
|
33
|
|
|
s2[0] = mu # should get it from OU.rvs()!!!! |
34
|
|
|
for i in range(1, times.size): |
35
|
|
|
ti = times[i - 1] |
|
|
|
|
36
|
|
|
y = s2[i - 1] |
|
|
|
|
37
|
|
|
while ti < times[i]: |
38
|
|
|
y = y + dt * (theta * (mu - y) + sigma * y * np.random.randn() / np.sqrt(dt)) |
|
|
|
|
39
|
|
|
ti = ti + dt |
|
|
|
|
40
|
|
|
s2[i] = y |
41
|
|
|
if scale is not None: |
42
|
|
|
s2 = scale * s2 / np.std(s2) |
|
|
|
|
43
|
|
|
if loc is not None: |
44
|
|
|
s2 = s2 - np.mean(s2) + loc |
|
|
|
|
45
|
|
|
return s2 |
46
|
|
|
|
47
|
|
|
|
48
|
|
|
def lc_gen_psd_c(ts, values, times): |
|
|
|
|
49
|
|
|
"""Generation using interpolated PSD for light curves with similar PSD, mean and std.""" |
50
|
|
|
|
51
|
|
|
f, p = scipy_signal.welch(values, nperseg=ts.size / 2) |
|
|
|
|
52
|
|
|
fp = np.linspace(min(f), max(f), times.size // 2 + 1) |
|
|
|
|
53
|
|
|
pp = np.interp(fp, f, p) |
|
|
|
|
54
|
|
|
fft = np.sqrt(2 * pp * pp.size) * np.exp(1j * 2 * np.pi * np.random.random(pp.size)) |
55
|
|
|
s2 = np.fft.irfft(fft, n=values.size) |
|
|
|
|
56
|
|
|
a = values.std() / s2.std() |
|
|
|
|
57
|
|
|
b = values.mean() - a * s2.mean() |
|
|
|
|
58
|
|
|
s2 = a * s2 + b |
|
|
|
|
59
|
|
|
return s2 |
60
|
|
|
|
61
|
|
|
|
62
|
|
|
def lc_gen_psd_fft(values): |
63
|
|
|
"""Generation using welch and fft with similar PSD, mean and std.""" |
64
|
|
|
|
65
|
|
|
# this is not valid for non-uniform times (see PSD tests for a comparison) |
66
|
|
|
f, pxx = scipy_signal.welch(values) |
|
|
|
|
67
|
|
|
# fft2 = np.sqrt(2*Pxx*Pxx.size)*np.exp(1j*2*pi*np.random.randn(Pxx.size)) |
68
|
|
|
fft2 = np.sqrt(2 * pxx * pxx.size) * np.exp(1j * 2 * np.pi * np.random.random(pxx.size)) |
69
|
|
|
s2 = np.fft.irfft(fft2, n=values.size) |
|
|
|
|
70
|
|
|
a = values.std() / s2.std() |
|
|
|
|
71
|
|
|
b = values.mean() - a * s2.mean() |
|
|
|
|
72
|
|
|
s2 = a * s2 + b |
|
|
|
|
73
|
|
|
return s2 |
74
|
|
|
|
75
|
|
|
|
76
|
|
|
def lc_gen_psd_lombscargle(times, values): |
77
|
|
|
"""Description goes here.""" |
78
|
|
|
|
79
|
|
|
if values.size % 2 != 0: |
80
|
|
|
sigp = values[:-1] |
81
|
|
|
tp = times[:-1] |
|
|
|
|
82
|
|
|
else: |
83
|
|
|
sigp = values |
84
|
|
|
tp = times |
|
|
|
|
85
|
|
|
|
86
|
|
|
N = values.size |
|
|
|
|
87
|
|
|
# k = np.arange(-N/2, N/2) no bc scipy_signal.lombscargle does not support freq zero |
88
|
|
|
k = np.linspace(-N / 2, N / 2 - 1 + 1e-6, N) |
89
|
|
|
freqs = k / 2 / np.pi |
90
|
|
|
|
91
|
|
|
pxx = scipy_signal.lombscargle(tp, sigp, freqs) |
92
|
|
|
|
93
|
|
|
# build random phase to get real signal |
94
|
|
|
phase = np.random.random(pxx.size // 2) |
95
|
|
|
phase = np.concatenate((-np.flip(phase), [0], phase[:-1])) |
96
|
|
|
fft2 = np.sqrt(2 * pxx * pxx.size) * np.exp(1j * 2 * np.pi * phase) |
97
|
|
|
s2 = nfft.nfft((times - (times.max() + times.min()) / 2) / np.ptp(times), fft2, N, use_fft=True) / N |
|
|
|
|
98
|
|
|
|
99
|
|
|
# fix small deviations |
100
|
|
|
a = values.std() / s2.std() |
|
|
|
|
101
|
|
|
b = values.mean() - a * s2.mean() |
|
|
|
|
102
|
|
|
s2 = a * s2 + b |
|
|
|
|
103
|
|
|
|
104
|
|
|
return s2 |
105
|
|
|
|
106
|
|
|
|
107
|
|
|
def lc_gen_psd_nft(times, values): |
|
|
|
|
108
|
|
|
k = np.arange(-times.size // 2, times.size / 2) |
109
|
|
|
N = k.size |
|
|
|
|
110
|
|
|
|
111
|
|
|
nft = nfft.nfft_adjoint((times - (times.max() + times.min()) / 2) / np.ptp(times), values, N, use_fft=True) |
|
|
|
|
112
|
|
|
|
113
|
|
|
# build random phase to get real signal |
114
|
|
|
phase = np.random.random(N // 2) |
115
|
|
|
phase = np.concatenate((-np.flip(phase), [0], phase[:-1])) |
116
|
|
|
|
117
|
|
|
fft2 = np.abs(nft) * np.exp(1j * 2 * np.pi * phase) |
118
|
|
|
s2 = nfft.nfft((times - (times.max() + times.min()) / 2) / np.ptp(times), fft2, use_fft=True) / N |
|
|
|
|
119
|
|
|
s2 = np.real(s2) # np.real to fix small imaginary part from numerical error |
|
|
|
|
120
|
|
|
|
121
|
|
|
# fix small mean, std difference from numerical error |
122
|
|
|
a = values.std() / s2.std() |
|
|
|
|
123
|
|
|
b = values.mean() - a * s2.mean() |
|
|
|
|
124
|
|
|
s2 = a * s2 + b |
|
|
|
|
125
|
|
|
|
126
|
|
|
return s2 |
127
|
|
|
|