1
|
|
|
<?php |
2
|
|
|
|
3
|
|
|
/** |
4
|
|
|
* JPGraph v4.0.3 |
5
|
|
|
*/ |
6
|
|
|
|
7
|
|
|
namespace Amenadiel\JpGraph\Util; |
8
|
|
|
|
9
|
|
|
/** |
10
|
|
|
* @class Bezier |
11
|
|
|
* // Create a new data array from a number of control points |
12
|
|
|
*/ |
13
|
|
|
class Bezier |
14
|
|
|
{ |
15
|
|
|
/** |
16
|
|
|
* @author Thomas Despoix, openXtrem company |
17
|
|
|
* @license released under QPL |
18
|
|
|
* @abstract Bezier interoplated point generation, |
19
|
|
|
* computed from control points data sets, based on Paul Bourke algorithm : |
20
|
|
|
* http://local.wasp.uwa.edu.au/~pbourke/geometry/bezier/index2.html |
21
|
|
|
*/ |
22
|
|
|
private $datax = []; |
23
|
|
|
private $datay = []; |
24
|
|
|
private $n = 0; |
25
|
|
|
|
26
|
1 |
|
public function __construct($datax, $datay, $attraction_factor = 1) |
27
|
|
|
{ |
28
|
|
|
// Adding control point multiple time will raise their attraction power over the curve |
29
|
1 |
|
$this->n = safe_count($datax); |
30
|
1 |
|
if ($this->n !== safe_count($datay)) { |
31
|
|
|
JpGraphError::RaiseL(19003); |
32
|
|
|
//('Bezier: Number of X and Y coordinates must be the same'); |
33
|
|
|
} |
34
|
1 |
|
$idx = 0; |
35
|
1 |
|
foreach ($datax as $datumx) { |
36
|
1 |
|
for ($i = 0; $i < $attraction_factor; ++$i) { |
37
|
1 |
|
$this->datax[$idx++] = $datumx; |
38
|
|
|
} |
39
|
|
|
} |
40
|
1 |
|
$idx = 0; |
41
|
1 |
|
foreach ($datay as $datumy) { |
42
|
1 |
|
for ($i = 0; $i < $attraction_factor; ++$i) { |
43
|
1 |
|
$this->datay[$idx++] = $datumy; |
44
|
|
|
} |
45
|
|
|
} |
46
|
1 |
|
$this->n *= $attraction_factor; |
47
|
1 |
|
} |
48
|
|
|
|
49
|
|
|
/** |
50
|
|
|
* Return a set of data points that specifies the bezier curve with $steps points. |
51
|
|
|
* |
52
|
|
|
* @param $steps Number of new points to return |
53
|
|
|
* |
54
|
|
|
* @return array($datax, $datay) |
55
|
|
|
*/ |
56
|
1 |
|
public function Get($steps) |
57
|
|
|
{ |
58
|
1 |
|
$datax = []; |
59
|
1 |
|
$datay = []; |
60
|
1 |
|
for ($i = 0; $i < $steps; ++$i) { |
61
|
1 |
|
list($datumx, $datumy) = $this->GetPoint((float) $i / (float) $steps); |
62
|
1 |
|
$datax[$i] = $datumx; |
63
|
1 |
|
$datay[$i] = $datumy; |
64
|
|
|
} |
65
|
|
|
|
66
|
1 |
|
$datax[] = end($this->datax); |
67
|
1 |
|
$datay[] = end($this->datay); |
68
|
|
|
|
69
|
1 |
|
return [$datax, $datay]; |
70
|
|
|
} |
71
|
|
|
|
72
|
|
|
/** |
73
|
|
|
* Return one point on the bezier curve. $mu is the position on the curve where $mu is in the |
74
|
|
|
* range 0 $mu < 1 where 0 is tha start point and 1 is the end point. Note that every newly computed |
75
|
|
|
* point depends on all the existing points. |
76
|
|
|
* |
77
|
|
|
* @param $mu Position on the bezier curve |
78
|
|
|
* |
79
|
|
|
* @return array($x, $y) |
80
|
|
|
*/ |
81
|
1 |
|
public function GetPoint($mu) |
82
|
|
|
{ |
83
|
1 |
|
$n = $this->n - 1; |
84
|
1 |
|
$k = 0; |
|
|
|
|
85
|
1 |
|
$kn = 0; |
|
|
|
|
86
|
1 |
|
$nn = 0; |
|
|
|
|
87
|
1 |
|
$nkn = 0; |
|
|
|
|
88
|
1 |
|
$blend = 0.0; |
|
|
|
|
89
|
1 |
|
$newx = 0.0; |
90
|
1 |
|
$newy = 0.0; |
91
|
|
|
|
92
|
1 |
|
$muk = 1.0; |
93
|
1 |
|
$munk = (float) pow(1 - $mu, (float) $n); |
94
|
|
|
|
95
|
1 |
|
for ($k = 0; $k <= $n; ++$k) { |
96
|
1 |
|
$nn = $n; |
97
|
1 |
|
$kn = $k; |
98
|
1 |
|
$nkn = $n - $k; |
99
|
1 |
|
$blend = $muk * $munk; |
100
|
1 |
|
$muk *= $mu; |
101
|
1 |
|
$munk /= (1 - $mu); |
102
|
1 |
|
while ($nn >= 1) { |
103
|
1 |
|
$blend *= $nn; |
104
|
1 |
|
--$nn; |
105
|
1 |
|
if ($kn > 1) { |
106
|
1 |
|
$blend /= (float) $kn; |
107
|
1 |
|
--$kn; |
108
|
|
|
} |
109
|
1 |
|
if ($nkn > 1) { |
110
|
1 |
|
$blend /= (float) $nkn; |
111
|
1 |
|
--$nkn; |
112
|
|
|
} |
113
|
|
|
} |
114
|
1 |
|
$newx += $this->datax[$k] * $blend; |
115
|
1 |
|
$newy += $this->datay[$k] * $blend; |
116
|
|
|
} |
117
|
|
|
|
118
|
1 |
|
return [$newx, $newy]; |
119
|
|
|
} |
120
|
|
|
} |
121
|
|
|
|