1 | """ |
||
2 | Random module docs. |
||
3 | """ |
||
4 | |||
5 | from __future__ import absolute_import as _ |
||
6 | |||
7 | import time |
||
8 | |||
9 | from tcod.libtcod import ffi, lib |
||
10 | from tcod.libtcod import RNG_MT as MERSENNE_TWISTER |
||
0 ignored issues
–
show
Bug
introduced
by
![]() |
|||
11 | from tcod.libtcod import RNG_CMWC as COMPLEMENTARY_MULTIPLY_WITH_CARRY |
||
0 ignored issues
–
show
|
|||
12 | |||
13 | |||
14 | class Random(object): |
||
15 | """The libtcod random number generator. |
||
16 | |||
17 | If all you need is a random number generator then it's recommended |
||
18 | that you use the :any:`random` module from the Python standard library. |
||
19 | |||
20 | If ``seed`` is None then a random seed will be generated. |
||
21 | |||
22 | Args: |
||
23 | algorithm (int): The algorithm to use. |
||
24 | seed (Optional[Hashable]): |
||
25 | Could be a 32-bit integer, but any hashable object is accepted. |
||
26 | |||
27 | Attributes: |
||
28 | random_c (CData): A cffi pointer to a TCOD_random_t object. |
||
29 | """ |
||
30 | def __init__(self, algorithm, seed=None): |
||
31 | """Create a new instance using this algorithm and seed.""" |
||
32 | if seed is None: |
||
33 | seed = time.time() + time.clock() |
||
34 | self.random_c = ffi.gc( |
||
35 | ffi.cast('mersenne_data_t*', |
||
36 | lib.TCOD_random_new_from_seed(algorithm, |
||
37 | hash(seed) % (1 << 32))), |
||
38 | lib.TCOD_random_delete) |
||
39 | |||
40 | @classmethod |
||
41 | def _new_from_cdata(cls, cdata): |
||
42 | """Return a new instance encapsulating this cdata.""" |
||
43 | self = object.__new__(cls) |
||
44 | self.random_c = cdata |
||
45 | return self |
||
46 | |||
47 | def randint(self, low, high): |
||
48 | """Return a random integer within the linear range: low <= n <= high. |
||
49 | |||
50 | Args: |
||
51 | low (int): The lower bound of the random range. |
||
52 | high (int): The upper bound of the random range. |
||
53 | |||
54 | Returns: |
||
55 | int: A random integer. |
||
56 | """ |
||
57 | return lib.TCOD_random_get_i(self.random_c, low, high) |
||
58 | |||
59 | def uniform(self, low, high): |
||
60 | """Return a random floating number in the range: low <= n <= high. |
||
61 | |||
62 | Args: |
||
63 | low (int): The lower bound of the random range. |
||
64 | high (int): The upper bound of the random range. |
||
65 | |||
66 | Returns: |
||
67 | float: A random float. |
||
68 | """ |
||
69 | return lib.TCOD_random_get_double(self.random_c, low, high) |
||
70 | |||
71 | def guass(self, mu, sigma): |
||
72 | """Return a random number using Gaussian distribution. |
||
73 | |||
74 | Args: |
||
75 | mu (float): The median returned value. |
||
76 | sigma (float): The standard deviation. |
||
77 | |||
78 | Returns: |
||
79 | float: A random float. |
||
80 | """ |
||
81 | return lib.TCOD_random_get_gaussian_double(self.random_c, mu, sigma) |
||
82 | |||
83 | def inverse_guass(self, mu, sigma): |
||
84 | """Return a random Gaussian number using the Box-Muller transform. |
||
85 | |||
86 | Args: |
||
87 | mu (float): The median returned value. |
||
88 | sigma (float): The standard deviation. |
||
89 | |||
90 | Returns: |
||
91 | float: A random float. |
||
92 | """ |
||
93 | return lib.TCOD_random_get_gaussian_double_inv(self.random_c, mu, sigma) |
||
94 | |||
95 | def __getstate__(self): |
||
96 | """Pack the self.random_c attribute into a portable state.""" |
||
97 | state = self.__dict__.copy() |
||
98 | state['random_c'] = { |
||
99 | 'algo': self.random_c.algo, |
||
100 | 'distribution': self.random_c.distribution, |
||
101 | 'mt': list(self.random_c.mt), |
||
102 | 'cur_mt': self.random_c.cur_mt, |
||
103 | 'Q': list(self.random_c.Q), |
||
104 | 'c': self.random_c.c, |
||
105 | 'cur': self.random_c.cur, |
||
106 | } |
||
107 | return state |
||
108 | |||
109 | def __setstate__(self, state): |
||
110 | """Create a new cdata object with the stored paramaters.""" |
||
111 | try: |
||
112 | cdata = state['random_c'] |
||
113 | except KeyError: # old/deprecated format |
||
114 | cdata = state['cdata'] |
||
115 | del state['cdata'] |
||
116 | state['random_c'] = ffi.new('mersenne_data_t*', cdata) |
||
117 | self.__dict__.update(state) |
||
118 |