1
|
|
|
""" |
2
|
|
|
The :any:`Noise.sample_mgrid` and :any:`Noise.sample_ogrid` methods are |
3
|
|
|
multi-threaded operations when the Python runtime supports OpenMP. |
4
|
|
|
Even when single threaded these methods will perform much better than |
5
|
|
|
multiple calls to :any:`Noise.get_point`. |
6
|
|
|
|
7
|
|
|
Example:: |
8
|
|
|
|
9
|
|
|
import numpy as np |
10
|
|
|
import tcod |
11
|
|
|
import tcod.noise |
12
|
|
|
|
13
|
|
|
noise = tcod.noise.Noise( |
14
|
|
|
dimensions=2, |
15
|
|
|
algorithm=tcod.NOISE_SIMPLEX, |
16
|
|
|
implementation=tcod.noise.TURBULENCE, |
17
|
|
|
hurst=0.5, |
18
|
|
|
lacunarity=2.0, |
19
|
|
|
octaves=4, |
20
|
|
|
seed=None, |
21
|
|
|
) |
22
|
|
|
|
23
|
|
|
# Create a 5x5 open multi-dimensional mesh-grid. |
24
|
|
|
ogrid = [np.arange(5, dtype=np.float32), |
25
|
|
|
np.arange(5, dtype=np.float32)] |
26
|
|
|
print(ogrid) |
27
|
|
|
|
28
|
|
|
# Scale the grid. |
29
|
|
|
ogrid[0] *= 0.25 |
30
|
|
|
ogrid[1] *= 0.25 |
31
|
|
|
|
32
|
|
|
# Return the sampled noise from this grid of points. |
33
|
|
|
samples = noise.sample_ogrid(ogrid) |
34
|
|
|
print(samples) |
35
|
|
|
""" |
36
|
|
|
from __future__ import absolute_import |
37
|
|
|
|
38
|
|
|
import numpy as np |
|
|
|
|
39
|
|
|
|
40
|
|
|
from tcod.libtcod import ffi, lib |
41
|
|
|
import tcod.libtcod |
42
|
|
|
|
43
|
|
|
"""Noise implementation constants""" |
|
|
|
|
44
|
|
|
SIMPLE = 0 |
45
|
|
|
FBM = 1 |
46
|
|
|
TURBULENCE = 2 |
47
|
|
|
|
48
|
|
|
class Noise(object): |
49
|
|
|
""" |
50
|
|
|
|
51
|
|
|
The ``hurst`` exponent describes the raggedness of the resultant noise, |
52
|
|
|
with a higher value leading to a smoother noise. |
53
|
|
|
Not used with tcod.noise.SIMPLE. |
54
|
|
|
|
55
|
|
|
``lacunarity`` is a multiplier that determines how fast the noise |
56
|
|
|
frequency increases for each successive octave. |
57
|
|
|
Not used with tcod.noise.SIMPLE. |
58
|
|
|
|
59
|
|
|
Args: |
60
|
|
|
dimensions (int): Must be from 1 to 4. |
61
|
|
|
algorithm (int): Defaults to NOISE_SIMPLEX |
62
|
|
|
implementation (int): Defaults to tcod.noise.SIMPLE |
63
|
|
|
hurst (float): The hurst exponent. Should be in the 0.0-1.0 range. |
64
|
|
|
lacunarity (float): The noise lacunarity. |
65
|
|
|
octaves (float): The level of detail on fBm and turbulence |
66
|
|
|
implementations. |
67
|
|
|
seed (Optional[Random]): A Random instance, or None. |
68
|
|
|
|
69
|
|
|
Attributes: |
70
|
|
|
noise_c (CData): A cffi pointer to a TCOD_noise_t object. |
71
|
|
|
""" |
72
|
|
|
|
73
|
|
|
def __init__(self, dimensions, algorithm=2, implementation=SIMPLE, |
74
|
|
|
hurst=0.5, lacunarity=2.0, octaves=4, seed=None): |
75
|
|
|
if not 0 < dimensions <= 4: |
76
|
|
|
raise ValueError('dimensions must be in range 0 < n <= 4, got %r' % |
77
|
|
|
(dimensions,)) |
78
|
|
|
self._random = seed |
79
|
|
|
_random_c = seed.random_c if seed else ffi.NULL |
80
|
|
|
self._algorithm = algorithm |
81
|
|
|
self.noise_c = ffi.gc( |
82
|
|
|
ffi.cast( |
83
|
|
|
'perlin_data_t*', |
84
|
|
|
lib.TCOD_noise_new(dimensions, hurst, lacunarity, |
85
|
|
|
_random_c), |
86
|
|
|
), |
87
|
|
|
lib.TCOD_noise_delete) |
88
|
|
|
self._tdl_noise_c = ffi.new('TDLNoise*', (self.noise_c, |
89
|
|
|
dimensions, |
90
|
|
|
0, |
91
|
|
|
octaves)) |
92
|
|
|
self.implementation = implementation # sanity check |
93
|
|
|
|
94
|
|
|
@property |
95
|
|
|
def dimensions(self): |
|
|
|
|
96
|
|
|
return self._tdl_noise_c.dimensions |
97
|
|
|
|
98
|
|
|
@property |
99
|
|
|
def dimentions(self): # deprecated |
|
|
|
|
100
|
|
|
return self.dimensions |
101
|
|
|
|
102
|
|
|
@property |
103
|
|
|
def algorithm(self): |
|
|
|
|
104
|
|
|
return self.noise_c.noise_type |
105
|
|
|
@algorithm.setter |
106
|
|
|
def algorithm(self, value): |
|
|
|
|
107
|
|
|
lib.TCOD_noise_set_type(self.noise_c, value) |
108
|
|
|
|
109
|
|
|
@property |
110
|
|
|
def implementation(self): |
|
|
|
|
111
|
|
|
return self._tdl_noise_c.implementation |
112
|
|
|
@implementation.setter |
113
|
|
|
def implementation(self, value): |
|
|
|
|
114
|
|
|
if not 0 <= value < 3: |
115
|
|
|
raise ValueError('%r is not a valid implementation. ' % (value,)) |
116
|
|
|
self._tdl_noise_c.implementation = value |
117
|
|
|
|
118
|
|
|
@property |
119
|
|
|
def hurst(self): |
|
|
|
|
120
|
|
|
return self.noise_c.H |
121
|
|
|
|
122
|
|
|
@property |
123
|
|
|
def lacunarity(self): |
|
|
|
|
124
|
|
|
return self.noise_c.lacunarity |
125
|
|
|
|
126
|
|
|
@property |
127
|
|
|
def octaves(self): |
|
|
|
|
128
|
|
|
return self._tdl_noise_c.octaves |
129
|
|
|
@octaves.setter |
130
|
|
|
def octaves(self, value): |
|
|
|
|
131
|
|
|
self._tdl_noise_c.octaves = value |
132
|
|
|
|
133
|
|
|
def get_point(self, x=0, y=0, z=0, w=0): |
|
|
|
|
134
|
|
|
"""Return the noise value at the (x, y, z, w) point. |
135
|
|
|
|
136
|
|
|
Args: |
137
|
|
|
x (float): The position on the 1st axis. |
138
|
|
|
y (float): The position on the 2nd axis. |
139
|
|
|
z (float): The position on the 3rd axis. |
140
|
|
|
w (float): The position on the 4th axis. |
141
|
|
|
""" |
142
|
|
|
return lib.NoiseGetSample(self._tdl_noise_c, (x, y, z, w)) |
143
|
|
|
|
144
|
|
|
def sample_mgrid(self, mgrid): |
145
|
|
|
"""Sample a mesh-grid array and return the result. |
146
|
|
|
|
147
|
|
|
The :any:`sample_ogrid` method performs better as there is a lot of |
148
|
|
|
overhead when working with large mesh-grids. |
149
|
|
|
|
150
|
|
|
Args: |
151
|
|
|
mgrid (numpy.ndarray): A mesh-grid array of points to sample. |
152
|
|
|
A contiguous array of type `numpy.float32` is preferred. |
153
|
|
|
|
154
|
|
|
Returns: |
155
|
|
|
numpy.ndarray: An array of sampled points. |
156
|
|
|
|
157
|
|
|
This array has the shape: ``mgrid.shape[:-1]``. |
158
|
|
|
The ``dtype`` is `numpy.float32`. |
159
|
|
|
""" |
160
|
|
|
mgrid = np.ascontiguousarray(mgrid, np.float32) |
161
|
|
|
if mgrid.shape[0] != self.dimensions: |
162
|
|
|
raise ValueError('mgrid.shape[0] must equal self.dimensions, ' |
163
|
|
|
'%r[0] != %r' % (mgrid.shape, self.dimensions)) |
164
|
|
|
out = np.ndarray(mgrid.shape[1:], np.float32) |
165
|
|
|
if mgrid.shape[1:] != out.shape: |
166
|
|
|
raise ValueError('mgrid.shape[1:] must equal out.shape, ' |
167
|
|
|
'%r[1:] != %r' % (mgrid.shape, out.shape)) |
168
|
|
|
lib.NoiseSampleMeshGrid(self._tdl_noise_c, out.size, |
169
|
|
|
ffi.cast('float*', mgrid.ctypes.data), |
170
|
|
|
ffi.cast('float*', out.ctypes.data)) |
171
|
|
|
return out |
172
|
|
|
|
173
|
|
|
def sample_ogrid(self, ogrid): |
174
|
|
|
"""Sample an open mesh-grid array and return the result. |
175
|
|
|
|
176
|
|
|
Args |
177
|
|
|
ogrid (Sequence[Sequence[float]]): An open mesh-grid. |
178
|
|
|
|
179
|
|
|
Returns: |
180
|
|
|
numpy.ndarray: An array of sampled points. |
181
|
|
|
|
182
|
|
|
The ``shape`` is based on the lengths of the open mesh-grid |
183
|
|
|
arrays. |
184
|
|
|
The ``dtype`` is `numpy.float32`. |
185
|
|
|
""" |
186
|
|
|
if len(ogrid) != self.dimensions: |
187
|
|
|
raise ValueError('len(ogrid) must equal self.dimensions, ' |
188
|
|
|
'%r != %r' % (len(ogrid), self.dimensions)) |
189
|
|
|
ogrids = [np.ascontiguousarray(array, np.float32) for array in ogrid] |
190
|
|
|
out = np.ndarray([array.size for array in ogrids], np.float32) |
191
|
|
|
lib.NoiseSampleOpenMeshGrid( |
192
|
|
|
self._tdl_noise_c, |
193
|
|
|
len(ogrids), |
194
|
|
|
out.shape, |
195
|
|
|
[ffi.cast('float*', array.ctypes.data) for array in ogrids], |
196
|
|
|
ffi.cast('float*', out.ctypes.data), |
197
|
|
|
) |
198
|
|
|
return out |
199
|
|
|
|
200
|
|
|
def __getstate__(self): |
201
|
|
|
state = self.__dict__.copy() |
202
|
|
|
if self.dimensions < 4 and self.noise_c.waveletTileData == ffi.NULL: |
203
|
|
|
# Trigger a side effect of wavelet, so that copies will be synced. |
204
|
|
|
saved_algo = self.algorithm |
205
|
|
|
self.algorithm = tcod.libtcod.NOISE_WAVELET |
|
|
|
|
206
|
|
|
self.get_point() |
207
|
|
|
self.algorithm = saved_algo |
208
|
|
|
|
209
|
|
|
waveletTileData = None |
|
|
|
|
210
|
|
|
if self.noise_c.waveletTileData != ffi.NULL: |
211
|
|
|
waveletTileData = list(self.noise_c.waveletTileData[0:32*32*32]) |
|
|
|
|
212
|
|
|
state['_waveletTileData'] = waveletTileData |
213
|
|
|
|
214
|
|
|
state['noise_c'] = { |
215
|
|
|
'ndim': self.noise_c.ndim, |
216
|
|
|
'map': list(self.noise_c.map), |
217
|
|
|
'buffer': [list(sub_buffer) for sub_buffer in self.noise_c.buffer], |
218
|
|
|
'H': self.noise_c.H, |
219
|
|
|
'lacunarity': self.noise_c.lacunarity, |
220
|
|
|
'exponent': list(self.noise_c.exponent), |
221
|
|
|
'waveletTileData': waveletTileData, |
222
|
|
|
'noise_type': self.noise_c.noise_type, |
223
|
|
|
} |
224
|
|
|
state['_tdl_noise_c'] = { |
225
|
|
|
'dimensions': self._tdl_noise_c.dimensions, |
226
|
|
|
'implementation': self._tdl_noise_c.implementation, |
227
|
|
|
'octaves': self._tdl_noise_c.octaves, |
228
|
|
|
} |
229
|
|
|
return state |
230
|
|
|
|
231
|
|
|
def __setstate__(self, state): |
232
|
|
|
if isinstance(state, tuple): # deprecated format |
233
|
|
|
return self._setstate_old(state) |
234
|
|
|
# unpack wavelet tile data if it exists |
235
|
|
|
if '_waveletTileData' in state: |
236
|
|
|
state['_waveletTileData'] = ffi.new('float[]', |
237
|
|
|
state['_waveletTileData']) |
238
|
|
|
state['noise_c']['waveletTileData'] = state['_waveletTileData'] |
239
|
|
|
else: |
240
|
|
|
state['noise_c']['waveletTileData'] = ffi.NULL |
241
|
|
|
|
242
|
|
|
# unpack perlin_data_t and link to Random instance |
243
|
|
|
state['noise_c']['rand'] = state['_random'].random_c |
244
|
|
|
state['noise_c'] = ffi.new('perlin_data_t*', state['noise_c']) |
245
|
|
|
|
246
|
|
|
# unpack TDLNoise and link to libtcod noise |
247
|
|
|
state['_tdl_noise_c']['noise'] = state['noise_c'] |
248
|
|
|
state['_tdl_noise_c'] = ffi.new('TDLNoise*', state['_tdl_noise_c']) |
249
|
|
|
self.__dict__.update(state) |
250
|
|
|
|
251
|
|
|
def _setstate_old(self, state): |
|
|
|
|
252
|
|
|
self._random = state[0] |
253
|
|
|
self.noise_c = ffi.new('perlin_data_t*') |
254
|
|
|
self.noise_c.ndim = state[3] |
255
|
|
|
ffi.buffer(self.noise_c.map)[:] = state[4] |
256
|
|
|
ffi.buffer(self.noise_c.buffer)[:] = state[5] |
257
|
|
|
self.noise_c.H = state[6] |
258
|
|
|
self.noise_c.lacunarity = state[7] |
259
|
|
|
ffi.buffer(self.noise_c.exponent)[:] = state[8] |
260
|
|
|
if state[9]: |
261
|
|
|
# high change of this being prematurely garbage collected! |
262
|
|
|
self.__waveletTileData = ffi.new('float[]', 32*32*32) |
|
|
|
|
263
|
|
|
ffi.buffer(self.__waveletTileData)[:] = state[9] |
264
|
|
|
self.noise_c.noise_type = state[10] |
265
|
|
|
self._tdl_noise_c = ffi.new('TDLNoise*', |
266
|
|
|
(self.noise_c, self.noise_c.ndim, |
267
|
|
|
state[1], state[2])) |
268
|
|
|
|
This can be caused by one of the following:
1. Missing Dependencies
This error could indicate a configuration issue of Pylint. Make sure that your libraries are available by adding the necessary commands.
2. Missing __init__.py files
This error could also result from missing
__init__.py
files in your module folders. Make sure that you place one file in each sub-folder.