@@ -5,776 +5,776 @@ |
||
5 | 5 | use MathPHP\Exception\OutOfBoundsException; |
6 | 6 | |
7 | 7 | /** |
8 | - * General references on financial functions and formulas: |
|
9 | - * - Open Document Format for Office Applications (OpenDocument) Version 1.2 Part 2: |
|
10 | - * Recalculated Formula (OpenFormula) Format. 29 September 2011. OASIS Standard. |
|
11 | - * http://docs.oasis-open.org/office/v1.2/os/OpenDocument-v1.2-os-part2.html#__RefHeading__1018228_715980110 |
|
12 | - * - https://wiki.openoffice.org/wiki/Documentation/How_Tos/Calc:_Derivation_of_Financial_Formulas#Loans_and_Annuities |
|
13 | - */ |
|
8 | + * General references on financial functions and formulas: |
|
9 | + * - Open Document Format for Office Applications (OpenDocument) Version 1.2 Part 2: |
|
10 | + * Recalculated Formula (OpenFormula) Format. 29 September 2011. OASIS Standard. |
|
11 | + * http://docs.oasis-open.org/office/v1.2/os/OpenDocument-v1.2-os-part2.html#__RefHeading__1018228_715980110 |
|
12 | + * - https://wiki.openoffice.org/wiki/Documentation/How_Tos/Calc:_Derivation_of_Financial_Formulas#Loans_and_Annuities |
|
13 | + */ |
|
14 | 14 | class Finance |
15 | 15 | { |
16 | - /** |
|
17 | - * Floating-point range near zero to consider insignificant. |
|
18 | - */ |
|
19 | - public const EPSILON = 1e-6; |
|
20 | - |
|
21 | - /** |
|
22 | - * Consider any floating-point value less than epsilon from zero as zero, |
|
23 | - * ie any value in the range [-epsilon < 0 < epsilon] is considered zero. |
|
24 | - * Also used to convert -0.0 to 0.0. |
|
25 | - * |
|
26 | - * @param float $value |
|
27 | - * @param float $epsilon |
|
28 | - * |
|
29 | - * @return float |
|
30 | - */ |
|
31 | - private static function checkZero(float $value, float $epsilon = self::EPSILON): float |
|
32 | - { |
|
33 | - return \abs($value) < $epsilon ? 0.0 : $value; |
|
34 | - } |
|
35 | - |
|
36 | - /** |
|
37 | - * Financial payment for a loan or annuity with compound interest. |
|
38 | - * Determines the periodic payment amount for a given interest rate, |
|
39 | - * principal, targeted payment goal, life of the annuity as number |
|
40 | - * of payments, and whether the payments are made at the start or end |
|
41 | - * of each payment period. |
|
42 | - * |
|
43 | - * Same as the =PMT() function in most spreadsheet software. |
|
44 | - * |
|
45 | - * The basic monthly payment formula derivation: |
|
46 | - * https://en.wikipedia.org/wiki/Mortgage_calculator#Monthly_payment_formula |
|
47 | - * |
|
48 | - * rP(1+r)ᴺ |
|
49 | - * PMT = -------- |
|
50 | - * (1+r)ᴺ-1 |
|
51 | - * |
|
52 | - * The formula is adjusted to allow targeting any future value rather than 0. |
|
53 | - * The 1/(1+r*when) factor adjusts the payment to the beginning or end |
|
54 | - * of the period. In the common case of a payment at the end of a period, |
|
55 | - * the factor is 1 and reduces to the formula above. Setting when=1 computes |
|
56 | - * an "annuity due" with an immediate payment. |
|
57 | - * |
|
58 | - * Examples: |
|
59 | - * The payment on a 30-year fixed mortgage note of $265000 at 3.5% interest |
|
60 | - * paid at the end of every month. |
|
61 | - * pmt(0.035/12, 30*12, 265000, 0, false) |
|
62 | - * |
|
63 | - * The payment on a 30-year fixed mortgage note of $265000 at 3.5% interest |
|
64 | - * needed to half the principal in half in 5 years: |
|
65 | - * pmt(0.035/12, 5*12, 265000, 265000/2, false) |
|
66 | - * |
|
67 | - * The weekly payment into a savings account with 1% interest rate and current |
|
68 | - * balance of $1500 needed to reach $10000 after 3 years: |
|
69 | - * pmt(0.01/52, 3*52, -1500, 10000, false) |
|
70 | - * The present_value is negative indicating money put into the savings account, |
|
71 | - * whereas future_value is positive, indicating money that will be withdrawn from |
|
72 | - * the account. Similarly, the payment value is negative |
|
73 | - * |
|
74 | - * How much money can be withdrawn at the end of every quarter from an account |
|
75 | - * with $1000000 earning 4% so the money lasts 20 years: |
|
76 | - * pmt(0.04/4, 20*4, 1000000, 0, false) |
|
77 | - * |
|
78 | - * @param float $rate |
|
79 | - * @param int $periods |
|
80 | - * @param float $present_value |
|
81 | - * @param float $future_value |
|
82 | - * @param bool $beginning adjust the payment to the beginning or end of the period |
|
83 | - * |
|
84 | - * @return float |
|
85 | - */ |
|
86 | - public static function pmt(float $rate, int $periods, float $present_value, float $future_value = 0.0, bool $beginning = false): float |
|
87 | - { |
|
88 | - $when = $beginning ? 1 : 0; |
|
89 | - |
|
90 | - if ($rate == 0) { |
|
91 | - return - ($future_value + $present_value) / $periods; |
|
92 | - } |
|
93 | - |
|
94 | - return - ($future_value + ($present_value * \pow(1 + $rate, $periods))) |
|
95 | - / |
|
96 | - ((1 + $rate * $when) / $rate * (\pow(1 + $rate, $periods) - 1)); |
|
97 | - } |
|
98 | - |
|
99 | - /** |
|
100 | - * Interest on a financial payment for a loan or annuity with compound interest. |
|
101 | - * Determines the interest payment at a particular period of the annuity. For |
|
102 | - * a typical loan paid down to zero, the amount of interest and principle paid |
|
103 | - * throughout the lifetime of the loan will change, with the interest portion |
|
104 | - * of the payment decreasing over time as the loan principle decreases. |
|
105 | - * |
|
106 | - * Same as the =IPMT() function in most spreadsheet software. |
|
107 | - * |
|
108 | - * See the PMT function for derivation of the formula. For IPMT, we have |
|
109 | - * the payment equal to the interest portion and principle portion of the payment: |
|
110 | - * |
|
111 | - * PMT = IPMT + PPMT |
|
112 | - * |
|
113 | - * The interest portion IPMT on a regular annuity can be calculated by computing |
|
114 | - * the future value of the annuity for the prior period and computing the compound |
|
115 | - * interest for one period: |
|
116 | - * |
|
117 | - * IPMT = FV(p=n-1) * rate |
|
118 | - * |
|
119 | - * For an "annuity due" where payment is at the start of the period, period=1 has |
|
120 | - * no interest portion of the payment because no time has elapsed for compounding. |
|
121 | - * To compute the interest portion of the payment, the future value of 2 periods |
|
122 | - * back needs to be computed, as the definition of a period is different, giving: |
|
123 | - * |
|
124 | - * IPMT = (FV(p=n-2) - PMT) * rate |
|
125 | - * |
|
126 | - * By thinking of the future value at period 0 instead of the present value, the |
|
127 | - * given formulas are computed. |
|
128 | - * |
|
129 | - * Example of regular annuity and annuity due for a loan of $10.00 paid back in 3 periods. |
|
130 | - * Although the principle payments are equal, the total payment and interest portion are |
|
131 | - * lower with the annuity due because a principle payment is made immediately. |
|
132 | - * |
|
133 | - * Regular Annuity | Annuity Due |
|
134 | - * Period FV PMT IPMT PPMT | PMT IPMT PPMT |
|
135 | - * 0 -10.00 | |
|
136 | - * 1 -6.83 -3.67 -0.50 -3.17 | -3.50 0.00 -3.50 |
|
137 | - * 2 -3.50 -3.67 -0.34 -3.33 | -3.50 -0.33 -3.17 |
|
138 | - * 3 0.00 -3.67 -0.17 -3.50 | -3.50 -0.17 -3.33 |
|
139 | - * -----------------------|---------------------- |
|
140 | - * SUM -11.01 -1.01 -10.00 | -10.50 -0.50 -10.00 |
|
141 | - * |
|
142 | - * Examples: |
|
143 | - * The interest on a payment on a 30-year fixed mortgage note of $265000 at 3.5% interest |
|
144 | - * paid at the end of every month, looking at the first payment: |
|
145 | - * ipmt(0.035/12, 1, 30*12, 265000, 0, false) |
|
146 | - * |
|
147 | - * @param float $rate |
|
148 | - * @param int $period |
|
149 | - * @param int $periods |
|
150 | - * @param float $present_value |
|
151 | - * @param float $future_value |
|
152 | - * @param bool $beginning adjust the payment to the beginning or end of the period |
|
153 | - * |
|
154 | - * @return float |
|
155 | - */ |
|
156 | - public static function ipmt(float $rate, int $period, int $periods, float $present_value, float $future_value = 0.0, bool $beginning = false): float |
|
157 | - { |
|
158 | - if ($period < 1 || $period > $periods) { |
|
159 | - return \NAN; |
|
160 | - } |
|
161 | - |
|
162 | - if ($rate == 0) { |
|
163 | - return 0; |
|
164 | - } |
|
165 | - |
|
166 | - if ($beginning && $period == 1) { |
|
167 | - return 0.0; |
|
168 | - } |
|
169 | - |
|
170 | - $payment = self::pmt($rate, $periods, $present_value, $future_value, $beginning); |
|
171 | - if ($beginning) { |
|
172 | - $interest = (self::fv($rate, $period - 2, $payment, $present_value, $beginning) - $payment) * $rate; |
|
173 | - } else { |
|
174 | - $interest = self::fv($rate, $period - 1, $payment, $present_value, $beginning) * $rate; |
|
175 | - } |
|
176 | - |
|
177 | - return self::checkZero($interest); |
|
178 | - } |
|
179 | - |
|
180 | - /** |
|
181 | - * Principle on a financial payment for a loan or annuity with compound interest. |
|
182 | - * Determines the principle payment at a particular period of the annuity. For |
|
183 | - * a typical loan paid down to zero, the amount of interest and principle paid |
|
184 | - * throughout the lifetime of the loan will change, with the principle portion |
|
185 | - * of the payment increasing over time as the loan principle decreases. |
|
186 | - * |
|
187 | - * Same as the =PPMT() function in most spreadsheet software. |
|
188 | - * |
|
189 | - * See the PMT function for derivation of the formula. |
|
190 | - * See the IPMT function for derivation and use of PMT, IPMT, and PPMT. |
|
191 | - * |
|
192 | - * With derivations for PMT and IPMT, we simply compute: |
|
193 | - * |
|
194 | - * PPMT = PMT - IPMT |
|
195 | - * |
|
196 | - * Examples: |
|
197 | - * The principle on a payment on a 30-year fixed mortgage note of $265000 at 3.5% interest |
|
198 | - * paid at the end of every month, looking at the first payment: |
|
199 | - * ppmt(0.035/12, 1, 30*12, 265000, 0, false) |
|
200 | - * |
|
201 | - * @param float $rate |
|
202 | - * @param int $period |
|
203 | - * @param int $periods |
|
204 | - * @param float $present_value |
|
205 | - * @param float $future_value |
|
206 | - * @param bool $beginning adjust the payment to the beginning or end of the period |
|
207 | - * |
|
208 | - * @return float |
|
209 | - */ |
|
210 | - public static function ppmt(float $rate, int $period, int $periods, float $present_value, float $future_value = 0.0, bool $beginning = false): float |
|
211 | - { |
|
212 | - $payment = self::pmt($rate, $periods, $present_value, $future_value, $beginning); |
|
213 | - $ipmt = self::ipmt($rate, $period, $periods, $present_value, $future_value, $beginning); |
|
214 | - |
|
215 | - return $payment - $ipmt; |
|
216 | - } |
|
217 | - |
|
218 | - /** |
|
219 | - * Number of payment periods of an annuity. |
|
220 | - * Solves for the number of periods in the annuity formula. |
|
221 | - * |
|
222 | - * Same as the =NPER() function in most spreadsheet software. |
|
223 | - * |
|
224 | - * Solving the basic annuity formula for number of periods: |
|
225 | - * log(PMT - FV*r) |
|
226 | - * --------------- |
|
227 | - * log(PMT + PV*r) |
|
228 | - * n = -------------------- |
|
229 | - * log(1 + r) |
|
230 | - * |
|
231 | - * The (1+r*when) factor adjusts the payment to the beginning or end |
|
232 | - * of the period. In the common case of a payment at the end of a period, |
|
233 | - * the factor is 1 and reduces to the formula above. Setting when=1 computes |
|
234 | - * an "annuity due" with an immediate payment. |
|
235 | - * |
|
236 | - * Examples: |
|
237 | - * The number of periods of a $475000 mortgage with interest rate 3.5% and monthly |
|
238 | - * payment of $2132.96 paid in full: |
|
239 | - * nper(0.035/12, -2132.96, 475000, 0) |
|
240 | - * |
|
241 | - * @param float $rate |
|
242 | - * @param float $payment |
|
243 | - * @param float $present_value |
|
244 | - * @param float $future_value |
|
245 | - * @param bool $beginning adjust the payment to the beginning or end of the period |
|
246 | - * |
|
247 | - * @return float |
|
248 | - */ |
|
249 | - public static function periods(float $rate, float $payment, float $present_value, float $future_value, bool $beginning = false): float |
|
250 | - { |
|
251 | - $when = $beginning ? 1 : 0; |
|
252 | - |
|
253 | - if ($rate == 0) { |
|
254 | - return - ($present_value + $future_value) / $payment; |
|
255 | - } |
|
256 | - |
|
257 | - $initial = $payment * (1.0 + $rate * $when); |
|
258 | - return \log(($initial - $future_value * $rate) / ($initial + $present_value * $rate)) / \log(1.0 + $rate); |
|
259 | - } |
|
260 | - |
|
261 | - /** |
|
262 | - * Annual Equivalent Rate (AER) of an annual percentage rate (APR). |
|
263 | - * The effective yearly rate of an annual percentage rate when the |
|
264 | - * annual percentage rate is compounded periodically within the year. |
|
265 | - * |
|
266 | - * Same as the =EFFECT() function in most spreadsheet software. |
|
267 | - * |
|
268 | - * The formula: |
|
269 | - * https://en.wikipedia.org/wiki/Effective_interest_rate |
|
270 | - * |
|
271 | - * / i \ ᴺ |
|
272 | - * AER = | 1 + - | - 1 |
|
273 | - * \ n / |
|
274 | - * |
|
275 | - * Examples: |
|
276 | - * The AER of APR 3.5% interest compounded monthly. |
|
277 | - * aer(0.035, 12) |
|
278 | - * |
|
279 | - * @param float $nominal |
|
280 | - * @param int $periods |
|
281 | - * |
|
282 | - * @return float |
|
283 | - */ |
|
284 | - public static function aer(float $nominal, int $periods): float |
|
285 | - { |
|
286 | - if ($periods == 1) { |
|
287 | - return $nominal; |
|
288 | - } |
|
289 | - |
|
290 | - return \pow(1 + ($nominal / $periods), $periods) - 1; |
|
291 | - } |
|
292 | - |
|
293 | - /** |
|
294 | - * Annual Nominal Rate of an annual effective rate (AER). |
|
295 | - * The nominal yearly rate of an annual effective rate when the |
|
296 | - * annual effective rate is compounded periodically within the year. |
|
297 | - * |
|
298 | - * Same as the =NOMINAL() function in most spreadsheet software. |
|
299 | - * |
|
300 | - * See: |
|
301 | - * https://en.wikipedia.org/wiki/Nominal_interest_rate |
|
302 | - * |
|
303 | - * / 1/N \ |
|
304 | - * NOMINAL = | (AER + 1) -1 | * N |
|
305 | - * \ / |
|
306 | - * |
|
307 | - * Examples: |
|
308 | - * The nominal rate of AER 3.557% interest compounded monthly. |
|
309 | - * nominal(0.03557, 12) |
|
310 | - * |
|
311 | - * @param float $aer |
|
312 | - * @param int $periods |
|
313 | - * |
|
314 | - * @return float |
|
315 | - */ |
|
316 | - public static function nominal(float $aer, int $periods): float |
|
317 | - { |
|
318 | - if ($periods == 1) { |
|
319 | - return $aer; |
|
320 | - } |
|
321 | - |
|
322 | - return (\pow($aer + 1, 1 / $periods) - 1) * $periods; |
|
323 | - } |
|
324 | - |
|
325 | - /** |
|
326 | - * Future value for a loan or annuity with compound interest. |
|
327 | - * |
|
328 | - * Same as the =FV() function in most spreadsheet software. |
|
329 | - * |
|
330 | - * The basic future-value formula derivation: |
|
331 | - * https://en.wikipedia.org/wiki/Future_value |
|
332 | - * |
|
333 | - * PMT*((1+r)ᴺ - 1) |
|
334 | - * FV = -PV*(1+r)ᴺ - ---------------- |
|
335 | - * r |
|
336 | - * |
|
337 | - * The (1+r*when) factor adjusts the payment to the beginning or end |
|
338 | - * of the period. In the common case of a payment at the end of a period, |
|
339 | - * the factor is 1 and reduces to the formula above. Setting when=1 computes |
|
340 | - * an "annuity due" with an immediate payment. |
|
341 | - * |
|
342 | - * Examples: |
|
343 | - * The future value in 5 years on a 30-year fixed mortgage note of $265000 |
|
344 | - * at 3.5% interest paid at the end of every month. This is how much loan |
|
345 | - * principle would be outstanding: |
|
346 | - * fv(0.035/12, 5*12, 1189.97, -265000, false) |
|
347 | - * |
|
348 | - * The present_value is negative indicating money borrowed for the mortgage, |
|
349 | - * whereas payment is positive, indicating money that will be paid to the |
|
350 | - * mortgage. |
|
351 | - * |
|
352 | - * @param float $rate |
|
353 | - * @param int $periods |
|
354 | - * @param float $payment |
|
355 | - * @param float $present_value |
|
356 | - * @param bool $beginning adjust the payment to the beginning or end of the period |
|
357 | - * |
|
358 | - * @return float |
|
359 | - */ |
|
360 | - public static function fv(float $rate, int $periods, float $payment, float $present_value, bool $beginning = false): float |
|
361 | - { |
|
362 | - $when = $beginning ? 1 : 0; |
|
363 | - |
|
364 | - if ($rate == 0) { |
|
365 | - $fv = -($present_value + ($payment * $periods)); |
|
366 | - return self::checkZero($fv); |
|
367 | - } |
|
368 | - |
|
369 | - $initial = 1 + ($rate * $when); |
|
370 | - $compound = \pow(1 + $rate, $periods); |
|
371 | - $fv = - (($present_value * $compound) + (($payment * $initial * ($compound - 1)) / $rate)); |
|
372 | - |
|
373 | - return self::checkZero($fv); |
|
374 | - } |
|
375 | - |
|
376 | - /** |
|
377 | - * Present value for a loan or annuity with compound interest. |
|
378 | - * |
|
379 | - * Same as the =PV() function in most spreadsheet software. |
|
380 | - * |
|
381 | - * The basic present-value formula derivation: |
|
382 | - * https://en.wikipedia.org/wiki/Present_value |
|
383 | - * |
|
384 | - * PMT*((1+r)ᴺ - 1) |
|
385 | - * PV = -FV - ---------------- |
|
386 | - * r |
|
387 | - * --------------------- |
|
388 | - * (1 + r)ᴺ |
|
389 | - * |
|
390 | - * The (1+r*when) factor adjusts the payment to the beginning or end |
|
391 | - * of the period. In the common case of a payment at the end of a period, |
|
392 | - * the factor is 1 and reduces to the formula above. Setting when=1 computes |
|
393 | - * an "annuity due" with an immediate payment. |
|
394 | - * |
|
395 | - * Examples: |
|
396 | - * The present value of a bond's $1000 face value paid in 5 year's time |
|
397 | - * with a constant discount rate of 3.5% compounded monthly: |
|
398 | - * pv(0.035/12, 5*12, 0, -1000, false) |
|
399 | - * |
|
400 | - * The present value of a $1000 5-year bond that pays a fixed 7% ($70) |
|
401 | - * coupon at the end of each year with a discount rate of 5%: |
|
402 | - * pv(0.5, 5, -70, -1000, false) |
|
403 | - * |
|
404 | - * The payment and future_value is negative indicating money paid out. |
|
405 | - * |
|
406 | - * @param float $rate |
|
407 | - * @param int $periods |
|
408 | - * @param float $payment |
|
409 | - * @param float $future_value |
|
410 | - * @param bool $beginning adjust the payment to the beginning or end of the period |
|
411 | - * |
|
412 | - * @return float |
|
413 | - */ |
|
414 | - public static function pv(float $rate, int $periods, float $payment, float $future_value, bool $beginning = false): float |
|
415 | - { |
|
416 | - $when = $beginning ? 1 : 0; |
|
417 | - |
|
418 | - if ($rate == 0) { |
|
419 | - $pv = -$future_value - ($payment * $periods); |
|
420 | - return self::checkZero($pv); |
|
421 | - } |
|
422 | - |
|
423 | - $initial = 1 + ($rate * $when); |
|
424 | - $compound = \pow(1 + $rate, $periods); |
|
425 | - $pv = (-$future_value - (($payment * $initial * ($compound - 1)) / $rate)) / $compound; |
|
426 | - |
|
427 | - return self::checkZero($pv); |
|
428 | - } |
|
429 | - |
|
430 | - /** |
|
431 | - * Net present value of cash flows. Cash flows are periodic starting |
|
432 | - * from an initial time and with a uniform discount rate. |
|
433 | - * |
|
434 | - * Similar to the =NPV() function in most spreadsheet software, except |
|
435 | - * the initial (usually negative) cash flow at time 0 is given as the |
|
436 | - * first element of the array rather than subtracted. For example, |
|
437 | - * spreadsheet: =NPV(0.01, 100, 200, 300, 400) - 1000 |
|
438 | - * is done as |
|
439 | - * MathPHP::npv(0.01, [-1000, 100, 200, 300, 400]) |
|
440 | - * |
|
441 | - * The basic net-present-value formula derivation: |
|
442 | - * https://en.wikipedia.org/wiki/Net_present_value |
|
443 | - * |
|
444 | - * n Rt |
|
445 | - * Σ -------- |
|
446 | - * t=0 (1 / r)ᵗ |
|
447 | - * |
|
448 | - * Examples: |
|
449 | - * The net present value of 5 yearly cash flows after an initial $1000 |
|
450 | - * investment with a 3% discount rate: |
|
451 | - * npv(0.03, [-1000, 100, 500, 300, 700, 700]) |
|
452 | - * |
|
453 | - * @param float $rate |
|
454 | - * @param array<float> $values |
|
455 | - * |
|
456 | - * @return float |
|
457 | - */ |
|
458 | - public static function npv(float $rate, array $values): float |
|
459 | - { |
|
460 | - $result = 0.0; |
|
461 | - |
|
462 | - for ($i = 0; $i < \count($values); ++$i) { |
|
463 | - $result += $values[$i] / (1 + $rate) ** $i; |
|
464 | - } |
|
465 | - |
|
466 | - return $result; |
|
467 | - } |
|
468 | - |
|
469 | - /** |
|
470 | - * Interest rate per period of an Annuity. |
|
471 | - * |
|
472 | - * Same as the =RATE() formula in most spreadsheet software. |
|
473 | - * |
|
474 | - * The basic rate formula derivation is to solve for the future value |
|
475 | - * taking into account the present value: |
|
476 | - * https://en.wikipedia.org/wiki/Future_value |
|
477 | - * |
|
478 | - * ((1+r)ᴺ - 1) |
|
479 | - * FV + PV*(1+r)ᴺ + PMT * ------------ = 0 |
|
480 | - * r |
|
481 | - * The (1+r*when) factor adjusts the payment to the beginning or end |
|
482 | - * of the period. In the common case of a payment at the end of a period, |
|
483 | - * the factor is 1 and reduces to the formula above. Setting when=1 computes |
|
484 | - * an "annuity due" with an immediate payment. |
|
485 | - * |
|
486 | - * Not all solutions for the rate have real-value solutions or converge. |
|
487 | - * In these cases, NAN is returned. |
|
488 | - * |
|
489 | - * @param float $periods |
|
490 | - * @param float $payment |
|
491 | - * @param float $present_value |
|
492 | - * @param float $future_value |
|
493 | - * @param bool $beginning |
|
494 | - * @param float $initial_guess |
|
495 | - * |
|
496 | - * @return float |
|
497 | - */ |
|
498 | - public static function rate(float $periods, float $payment, float $present_value, float $future_value, bool $beginning = false, float $initial_guess = 0.1): float |
|
499 | - { |
|
500 | - $when = $beginning ? 1 : 0; |
|
501 | - |
|
502 | - $func = function ($x, $periods, $payment, $present_value, $future_value, $when) { |
|
503 | - return $future_value + $present_value * (1 + $x) ** $periods + $payment * (1 + $x * $when) / $x * ((1 + $x) ** $periods - 1); |
|
504 | - }; |
|
505 | - |
|
506 | - return self::checkZero(NumericalAnalysis\RootFinding\NewtonsMethod::solve($func, [$initial_guess, $periods, $payment, $present_value, $future_value, $when], 0, self::EPSILON, 0)); |
|
507 | - } |
|
508 | - |
|
509 | - /** |
|
510 | - * Internal rate of return. |
|
511 | - * Periodic rate of return that would provide a net-present value (NPV) of 0. |
|
512 | - * |
|
513 | - * Same as =IRR formula in most spreadsheet software. |
|
514 | - * |
|
515 | - * Reference: |
|
516 | - * https://en.wikipedia.org/wiki/Internal_rate_of_return |
|
517 | - * |
|
518 | - * Examples: |
|
519 | - * The rate of return of an initial investment of $100 with returns |
|
520 | - * of $50, $40, and $30: |
|
521 | - * irr([-100, 50, 40, 30]) |
|
522 | - * |
|
523 | - * Solves for NPV=0 using Newton's Method. |
|
524 | - * @param array<float> $values |
|
525 | - * @param float $initial_guess |
|
526 | - * |
|
527 | - * @return float |
|
528 | - * |
|
529 | - * @throws OutOfBoundsException |
|
530 | - * |
|
531 | - * @todo: Use eigenvalues to find the roots of a characteristic polynomial. |
|
532 | - * This will allow finding all solutions and eliminate the need of the initial_guess. |
|
533 | - */ |
|
534 | - public static function irr(array $values, float $initial_guess = 0.1): float |
|
535 | - { |
|
536 | - $func = function ($x, $values) { |
|
537 | - return Finance::npv($x, $values); |
|
538 | - }; |
|
539 | - |
|
540 | - if (\count($values) <= 1) { |
|
541 | - return \NAN; |
|
542 | - } |
|
543 | - |
|
544 | - $root = NumericalAnalysis\RootFinding\NewtonsMethod::solve($func, [$initial_guess, $values], 0, self::EPSILON, 0); |
|
545 | - if (!\is_nan($root)) { |
|
546 | - return self::CheckZero($root); |
|
547 | - } |
|
548 | - return self::checkZero(self::alternateIrr($values)); |
|
549 | - } |
|
550 | - |
|
551 | - /** |
|
552 | - * Alternate IRR implementation. |
|
553 | - * |
|
554 | - * A more numerically stable implementation that converges to only one value. |
|
555 | - * |
|
556 | - * Based off of Better: https://github.com/better/irr |
|
557 | - * |
|
558 | - * @param array<float> $values |
|
559 | - * |
|
560 | - * @return float |
|
561 | - */ |
|
562 | - private static function alternateIrr(array $values): float |
|
563 | - { |
|
564 | - $rate = 0.0; |
|
565 | - for ($iter = 0; $iter < 100; $iter++) { |
|
566 | - $m = -1000; |
|
567 | - for ($i = 0; $i < \count($values); $i++) { |
|
568 | - $m = \max($m, -$rate * $i); |
|
569 | - } |
|
570 | - $f = []; |
|
571 | - for ($i = 0; $i < \count($values); $i++) { |
|
572 | - $f[$i] = \exp(-$rate * $i - $m); |
|
573 | - } |
|
574 | - $t = 0; |
|
575 | - for ($i = 0; $i < \count($values); $i++) { |
|
576 | - $t += $f[$i] * $values[$i]; |
|
577 | - } |
|
578 | - if (\abs($t) < (self::EPSILON * \exp($m))) { |
|
579 | - break; |
|
580 | - } |
|
581 | - $u = 0; |
|
582 | - for ($i = 0; $i < \count($values); $i++) { |
|
583 | - $u += $f[$i] * $i * $values[$i]; |
|
584 | - } |
|
585 | - if ($u == 0) { |
|
586 | - return \NAN; |
|
587 | - } |
|
588 | - $rate += $t / $u; |
|
589 | - } |
|
590 | - return \exp($rate) - 1; |
|
591 | - } |
|
592 | - |
|
593 | - /** |
|
594 | - * Modified internal rate of return. |
|
595 | - * Rate of return that discounts outflows (investments) at the financing rate, |
|
596 | - * and reinvests inflows with an expected rate of return. |
|
597 | - * |
|
598 | - * Same as =MIRR formula in most spreadsheet software. |
|
599 | - * |
|
600 | - * The formula derivation: |
|
601 | - * https://en.wikipedia.org/wiki/Modified_internal_rate_of_return |
|
602 | - * |
|
603 | - * _____________________________ |
|
604 | - * n/ FV(re-invested cash inflows) |
|
605 | - * - / ---------------------------- - 1.0 |
|
606 | - * \/ PV(discounted cash outflows) |
|
607 | - * |
|
608 | - * Examples: |
|
609 | - * The rate of return of an initial investment of $100 at 5% financing |
|
610 | - * with returns of $50, $40, and $30 reinvested at 10%: |
|
611 | - * mirr([-100, 50, 40, 30], 0.05, 0.10) |
|
612 | - * |
|
613 | - * @param array<float> $values |
|
614 | - * @param float $finance_rate |
|
615 | - * @param float $reinvestment_rate |
|
616 | - * |
|
617 | - * @return float |
|
618 | - */ |
|
619 | - public static function mirr(array $values, float $finance_rate, float $reinvestment_rate): float |
|
620 | - { |
|
621 | - $inflows = array(); |
|
622 | - $outflows = array(); |
|
623 | - |
|
624 | - for ($i = 0; $i < \count($values); $i++) { |
|
625 | - if ($values[$i] >= 0) { |
|
626 | - $inflows[] = $values[$i]; |
|
627 | - $outflows[] = 0; |
|
628 | - } else { |
|
629 | - $inflows[] = 0; |
|
630 | - $outflows[] = $values[$i]; |
|
631 | - } |
|
632 | - } |
|
633 | - |
|
634 | - $nonzero = function ($x) { |
|
635 | - return $x != 0; |
|
636 | - }; |
|
637 | - |
|
638 | - if (\count(\array_filter($inflows, $nonzero)) == 0 || \count(\array_filter($outflows, $nonzero)) == 0) { |
|
639 | - return \NAN; |
|
640 | - } |
|
641 | - |
|
642 | - $root = \count($values) - 1; |
|
643 | - $pv_inflows = self::npv($reinvestment_rate, $inflows); |
|
644 | - $fv_inflows = self::fv($reinvestment_rate, $root, 0, -$pv_inflows); |
|
645 | - $pv_outflows = self::npv($finance_rate, $outflows); |
|
646 | - |
|
647 | - return self::checkZero(\pow($fv_inflows / -$pv_outflows, 1 / $root) - 1); |
|
648 | - } |
|
649 | - |
|
650 | - /** |
|
651 | - * Discounted Payback of an investment. |
|
652 | - * The number of periods to recoup cash outlays of an investment. |
|
653 | - * |
|
654 | - * This is commonly used with discount rate=0 as simple payback period, |
|
655 | - * but it is not a real financial measurement when it doesn't consider the |
|
656 | - * discount rate. Even with a discount rate, it doesn't consider the cost |
|
657 | - * of capital or re-investment of returns. |
|
658 | - * |
|
659 | - * Avoid this when possible. Consider NPV, MIRR, IRR, and other financial |
|
660 | - * functions. |
|
661 | - * |
|
662 | - * Reference: |
|
663 | - * https://en.wikipedia.org/wiki/Payback_period |
|
664 | - * |
|
665 | - * The result is given assuming cash flows are continous throughout a period. |
|
666 | - * To compute payback in terms of whole periods, use ceil() on the result. |
|
667 | - * |
|
668 | - * An investment could reach its payback period before future cash outlays occur. |
|
669 | - * The payback period returned is defined to be the final point at which the |
|
670 | - * sum of returns becomes positive. |
|
671 | - * |
|
672 | - * Examples: |
|
673 | - * The payback period of an investment with a $1,000 investment and future returns |
|
674 | - * of $100, $200, $300, $400, $500: |
|
675 | - * payback([-1000, 100, 200, 300, 400, 500]) |
|
676 | - * |
|
677 | - * The discounted payback period of an investment with a $1,000 investment, future returns |
|
678 | - * of $100, $200, $300, $400, $500, and a discount rate of 0.10: |
|
679 | - * payback([-1000, 100, 200, 300, 400, 500], 0.1) |
|
680 | - * |
|
681 | - * @param array<float> $values |
|
682 | - * @param float $rate |
|
683 | - * |
|
684 | - * @return float |
|
685 | - */ |
|
686 | - public static function payback(array $values, float $rate = 0.0): float |
|
687 | - { |
|
688 | - $last_outflow = -1; |
|
689 | - for ($i = 0; $i < \count($values); $i++) { |
|
690 | - if ($values[$i] < 0) { |
|
691 | - $last_outflow = $i; |
|
692 | - } |
|
693 | - } |
|
694 | - |
|
695 | - if ($last_outflow < 0) { |
|
696 | - return 0.0; |
|
697 | - } |
|
698 | - |
|
699 | - $sum = $values[0]; |
|
700 | - $payback_period = -1; |
|
701 | - |
|
702 | - for ($i = 1; $i < \count($values); $i++) { |
|
703 | - $prevsum = $sum; |
|
704 | - $discounted_flow = $values[$i] / (1 + $rate) ** $i; |
|
705 | - $sum += $discounted_flow; |
|
706 | - if ($sum >= 0) { |
|
707 | - if ($i > $last_outflow) { |
|
708 | - return ($i - 1) + (-$prevsum / $discounted_flow); |
|
709 | - } |
|
710 | - if ($payback_period == -1) { |
|
711 | - $payback_period = ($i - 1) + (-$prevsum / $discounted_flow); |
|
712 | - } |
|
713 | - } else { |
|
714 | - $payback_period = -1; |
|
715 | - } |
|
716 | - } |
|
717 | - if ($sum >= 0) { |
|
718 | - return $payback_period; |
|
719 | - } |
|
720 | - |
|
721 | - return \NAN; |
|
722 | - } |
|
723 | - |
|
724 | - /** |
|
725 | - * Profitability Index. |
|
726 | - * The Profitability Index, also referred to as Profit Investment |
|
727 | - * Ratio (PIR) and Value Investment Ratio (VIR), is a comparison of |
|
728 | - * discounted cash inflows to discounted cash outflows. It can be |
|
729 | - * used as a decision criteria of an investment, using larger than 1 |
|
730 | - * to choose an investment, and less than 1 to pass. |
|
731 | - * |
|
732 | - * The formula derivation: |
|
733 | - * https://en.wikipedia.org/wiki/Profitability_index |
|
734 | - * |
|
735 | - * PV(cash inflows) |
|
736 | - * ---------------- |
|
737 | - * PV(cash outflows) |
|
738 | - * |
|
739 | - * The formula is usually stated in terms of the initial investmest, |
|
740 | - * but it is generalized here to discount all future outflows. |
|
741 | - * |
|
742 | - * Examples: |
|
743 | - * The profitability index of an initial $100 investment with future |
|
744 | - * returns of $50, $50, $50 with a 10% discount rate: |
|
745 | - * profitabilityIndex([-100, 50, 50, 50], 0.10) |
|
746 | - * |
|
747 | - * @param array<float> $values |
|
748 | - * @param float $rate |
|
749 | - * |
|
750 | - * @return float |
|
751 | - */ |
|
752 | - public static function profitabilityIndex(array $values, float $rate): float |
|
753 | - { |
|
754 | - $inflows = array(); |
|
755 | - $outflows = array(); |
|
756 | - |
|
757 | - for ($i = 0; $i < \count($values); $i++) { |
|
758 | - if ($values[$i] >= 0) { |
|
759 | - $inflows[] = $values[$i]; |
|
760 | - $outflows[] = 0; |
|
761 | - } else { |
|
762 | - $inflows[] = 0; |
|
763 | - $outflows[] = -$values[$i]; |
|
764 | - } |
|
765 | - } |
|
766 | - |
|
767 | - $nonzero = function ($x) { |
|
768 | - return $x != 0; |
|
769 | - }; |
|
770 | - |
|
771 | - if (\count(\array_filter($outflows, $nonzero)) == 0) { |
|
772 | - return \NAN; |
|
773 | - } |
|
774 | - |
|
775 | - $pv_inflows = self::npv($rate, $inflows); |
|
776 | - $pv_outflows = self::npv($rate, $outflows); |
|
777 | - |
|
778 | - return $pv_inflows / $pv_outflows; |
|
779 | - } |
|
16 | + /** |
|
17 | + * Floating-point range near zero to consider insignificant. |
|
18 | + */ |
|
19 | + public const EPSILON = 1e-6; |
|
20 | + |
|
21 | + /** |
|
22 | + * Consider any floating-point value less than epsilon from zero as zero, |
|
23 | + * ie any value in the range [-epsilon < 0 < epsilon] is considered zero. |
|
24 | + * Also used to convert -0.0 to 0.0. |
|
25 | + * |
|
26 | + * @param float $value |
|
27 | + * @param float $epsilon |
|
28 | + * |
|
29 | + * @return float |
|
30 | + */ |
|
31 | + private static function checkZero(float $value, float $epsilon = self::EPSILON): float |
|
32 | + { |
|
33 | + return \abs($value) < $epsilon ? 0.0 : $value; |
|
34 | + } |
|
35 | + |
|
36 | + /** |
|
37 | + * Financial payment for a loan or annuity with compound interest. |
|
38 | + * Determines the periodic payment amount for a given interest rate, |
|
39 | + * principal, targeted payment goal, life of the annuity as number |
|
40 | + * of payments, and whether the payments are made at the start or end |
|
41 | + * of each payment period. |
|
42 | + * |
|
43 | + * Same as the =PMT() function in most spreadsheet software. |
|
44 | + * |
|
45 | + * The basic monthly payment formula derivation: |
|
46 | + * https://en.wikipedia.org/wiki/Mortgage_calculator#Monthly_payment_formula |
|
47 | + * |
|
48 | + * rP(1+r)ᴺ |
|
49 | + * PMT = -------- |
|
50 | + * (1+r)ᴺ-1 |
|
51 | + * |
|
52 | + * The formula is adjusted to allow targeting any future value rather than 0. |
|
53 | + * The 1/(1+r*when) factor adjusts the payment to the beginning or end |
|
54 | + * of the period. In the common case of a payment at the end of a period, |
|
55 | + * the factor is 1 and reduces to the formula above. Setting when=1 computes |
|
56 | + * an "annuity due" with an immediate payment. |
|
57 | + * |
|
58 | + * Examples: |
|
59 | + * The payment on a 30-year fixed mortgage note of $265000 at 3.5% interest |
|
60 | + * paid at the end of every month. |
|
61 | + * pmt(0.035/12, 30*12, 265000, 0, false) |
|
62 | + * |
|
63 | + * The payment on a 30-year fixed mortgage note of $265000 at 3.5% interest |
|
64 | + * needed to half the principal in half in 5 years: |
|
65 | + * pmt(0.035/12, 5*12, 265000, 265000/2, false) |
|
66 | + * |
|
67 | + * The weekly payment into a savings account with 1% interest rate and current |
|
68 | + * balance of $1500 needed to reach $10000 after 3 years: |
|
69 | + * pmt(0.01/52, 3*52, -1500, 10000, false) |
|
70 | + * The present_value is negative indicating money put into the savings account, |
|
71 | + * whereas future_value is positive, indicating money that will be withdrawn from |
|
72 | + * the account. Similarly, the payment value is negative |
|
73 | + * |
|
74 | + * How much money can be withdrawn at the end of every quarter from an account |
|
75 | + * with $1000000 earning 4% so the money lasts 20 years: |
|
76 | + * pmt(0.04/4, 20*4, 1000000, 0, false) |
|
77 | + * |
|
78 | + * @param float $rate |
|
79 | + * @param int $periods |
|
80 | + * @param float $present_value |
|
81 | + * @param float $future_value |
|
82 | + * @param bool $beginning adjust the payment to the beginning or end of the period |
|
83 | + * |
|
84 | + * @return float |
|
85 | + */ |
|
86 | + public static function pmt(float $rate, int $periods, float $present_value, float $future_value = 0.0, bool $beginning = false): float |
|
87 | + { |
|
88 | + $when = $beginning ? 1 : 0; |
|
89 | + |
|
90 | + if ($rate == 0) { |
|
91 | + return - ($future_value + $present_value) / $periods; |
|
92 | + } |
|
93 | + |
|
94 | + return - ($future_value + ($present_value * \pow(1 + $rate, $periods))) |
|
95 | + / |
|
96 | + ((1 + $rate * $when) / $rate * (\pow(1 + $rate, $periods) - 1)); |
|
97 | + } |
|
98 | + |
|
99 | + /** |
|
100 | + * Interest on a financial payment for a loan or annuity with compound interest. |
|
101 | + * Determines the interest payment at a particular period of the annuity. For |
|
102 | + * a typical loan paid down to zero, the amount of interest and principle paid |
|
103 | + * throughout the lifetime of the loan will change, with the interest portion |
|
104 | + * of the payment decreasing over time as the loan principle decreases. |
|
105 | + * |
|
106 | + * Same as the =IPMT() function in most spreadsheet software. |
|
107 | + * |
|
108 | + * See the PMT function for derivation of the formula. For IPMT, we have |
|
109 | + * the payment equal to the interest portion and principle portion of the payment: |
|
110 | + * |
|
111 | + * PMT = IPMT + PPMT |
|
112 | + * |
|
113 | + * The interest portion IPMT on a regular annuity can be calculated by computing |
|
114 | + * the future value of the annuity for the prior period and computing the compound |
|
115 | + * interest for one period: |
|
116 | + * |
|
117 | + * IPMT = FV(p=n-1) * rate |
|
118 | + * |
|
119 | + * For an "annuity due" where payment is at the start of the period, period=1 has |
|
120 | + * no interest portion of the payment because no time has elapsed for compounding. |
|
121 | + * To compute the interest portion of the payment, the future value of 2 periods |
|
122 | + * back needs to be computed, as the definition of a period is different, giving: |
|
123 | + * |
|
124 | + * IPMT = (FV(p=n-2) - PMT) * rate |
|
125 | + * |
|
126 | + * By thinking of the future value at period 0 instead of the present value, the |
|
127 | + * given formulas are computed. |
|
128 | + * |
|
129 | + * Example of regular annuity and annuity due for a loan of $10.00 paid back in 3 periods. |
|
130 | + * Although the principle payments are equal, the total payment and interest portion are |
|
131 | + * lower with the annuity due because a principle payment is made immediately. |
|
132 | + * |
|
133 | + * Regular Annuity | Annuity Due |
|
134 | + * Period FV PMT IPMT PPMT | PMT IPMT PPMT |
|
135 | + * 0 -10.00 | |
|
136 | + * 1 -6.83 -3.67 -0.50 -3.17 | -3.50 0.00 -3.50 |
|
137 | + * 2 -3.50 -3.67 -0.34 -3.33 | -3.50 -0.33 -3.17 |
|
138 | + * 3 0.00 -3.67 -0.17 -3.50 | -3.50 -0.17 -3.33 |
|
139 | + * -----------------------|---------------------- |
|
140 | + * SUM -11.01 -1.01 -10.00 | -10.50 -0.50 -10.00 |
|
141 | + * |
|
142 | + * Examples: |
|
143 | + * The interest on a payment on a 30-year fixed mortgage note of $265000 at 3.5% interest |
|
144 | + * paid at the end of every month, looking at the first payment: |
|
145 | + * ipmt(0.035/12, 1, 30*12, 265000, 0, false) |
|
146 | + * |
|
147 | + * @param float $rate |
|
148 | + * @param int $period |
|
149 | + * @param int $periods |
|
150 | + * @param float $present_value |
|
151 | + * @param float $future_value |
|
152 | + * @param bool $beginning adjust the payment to the beginning or end of the period |
|
153 | + * |
|
154 | + * @return float |
|
155 | + */ |
|
156 | + public static function ipmt(float $rate, int $period, int $periods, float $present_value, float $future_value = 0.0, bool $beginning = false): float |
|
157 | + { |
|
158 | + if ($period < 1 || $period > $periods) { |
|
159 | + return \NAN; |
|
160 | + } |
|
161 | + |
|
162 | + if ($rate == 0) { |
|
163 | + return 0; |
|
164 | + } |
|
165 | + |
|
166 | + if ($beginning && $period == 1) { |
|
167 | + return 0.0; |
|
168 | + } |
|
169 | + |
|
170 | + $payment = self::pmt($rate, $periods, $present_value, $future_value, $beginning); |
|
171 | + if ($beginning) { |
|
172 | + $interest = (self::fv($rate, $period - 2, $payment, $present_value, $beginning) - $payment) * $rate; |
|
173 | + } else { |
|
174 | + $interest = self::fv($rate, $period - 1, $payment, $present_value, $beginning) * $rate; |
|
175 | + } |
|
176 | + |
|
177 | + return self::checkZero($interest); |
|
178 | + } |
|
179 | + |
|
180 | + /** |
|
181 | + * Principle on a financial payment for a loan or annuity with compound interest. |
|
182 | + * Determines the principle payment at a particular period of the annuity. For |
|
183 | + * a typical loan paid down to zero, the amount of interest and principle paid |
|
184 | + * throughout the lifetime of the loan will change, with the principle portion |
|
185 | + * of the payment increasing over time as the loan principle decreases. |
|
186 | + * |
|
187 | + * Same as the =PPMT() function in most spreadsheet software. |
|
188 | + * |
|
189 | + * See the PMT function for derivation of the formula. |
|
190 | + * See the IPMT function for derivation and use of PMT, IPMT, and PPMT. |
|
191 | + * |
|
192 | + * With derivations for PMT and IPMT, we simply compute: |
|
193 | + * |
|
194 | + * PPMT = PMT - IPMT |
|
195 | + * |
|
196 | + * Examples: |
|
197 | + * The principle on a payment on a 30-year fixed mortgage note of $265000 at 3.5% interest |
|
198 | + * paid at the end of every month, looking at the first payment: |
|
199 | + * ppmt(0.035/12, 1, 30*12, 265000, 0, false) |
|
200 | + * |
|
201 | + * @param float $rate |
|
202 | + * @param int $period |
|
203 | + * @param int $periods |
|
204 | + * @param float $present_value |
|
205 | + * @param float $future_value |
|
206 | + * @param bool $beginning adjust the payment to the beginning or end of the period |
|
207 | + * |
|
208 | + * @return float |
|
209 | + */ |
|
210 | + public static function ppmt(float $rate, int $period, int $periods, float $present_value, float $future_value = 0.0, bool $beginning = false): float |
|
211 | + { |
|
212 | + $payment = self::pmt($rate, $periods, $present_value, $future_value, $beginning); |
|
213 | + $ipmt = self::ipmt($rate, $period, $periods, $present_value, $future_value, $beginning); |
|
214 | + |
|
215 | + return $payment - $ipmt; |
|
216 | + } |
|
217 | + |
|
218 | + /** |
|
219 | + * Number of payment periods of an annuity. |
|
220 | + * Solves for the number of periods in the annuity formula. |
|
221 | + * |
|
222 | + * Same as the =NPER() function in most spreadsheet software. |
|
223 | + * |
|
224 | + * Solving the basic annuity formula for number of periods: |
|
225 | + * log(PMT - FV*r) |
|
226 | + * --------------- |
|
227 | + * log(PMT + PV*r) |
|
228 | + * n = -------------------- |
|
229 | + * log(1 + r) |
|
230 | + * |
|
231 | + * The (1+r*when) factor adjusts the payment to the beginning or end |
|
232 | + * of the period. In the common case of a payment at the end of a period, |
|
233 | + * the factor is 1 and reduces to the formula above. Setting when=1 computes |
|
234 | + * an "annuity due" with an immediate payment. |
|
235 | + * |
|
236 | + * Examples: |
|
237 | + * The number of periods of a $475000 mortgage with interest rate 3.5% and monthly |
|
238 | + * payment of $2132.96 paid in full: |
|
239 | + * nper(0.035/12, -2132.96, 475000, 0) |
|
240 | + * |
|
241 | + * @param float $rate |
|
242 | + * @param float $payment |
|
243 | + * @param float $present_value |
|
244 | + * @param float $future_value |
|
245 | + * @param bool $beginning adjust the payment to the beginning or end of the period |
|
246 | + * |
|
247 | + * @return float |
|
248 | + */ |
|
249 | + public static function periods(float $rate, float $payment, float $present_value, float $future_value, bool $beginning = false): float |
|
250 | + { |
|
251 | + $when = $beginning ? 1 : 0; |
|
252 | + |
|
253 | + if ($rate == 0) { |
|
254 | + return - ($present_value + $future_value) / $payment; |
|
255 | + } |
|
256 | + |
|
257 | + $initial = $payment * (1.0 + $rate * $when); |
|
258 | + return \log(($initial - $future_value * $rate) / ($initial + $present_value * $rate)) / \log(1.0 + $rate); |
|
259 | + } |
|
260 | + |
|
261 | + /** |
|
262 | + * Annual Equivalent Rate (AER) of an annual percentage rate (APR). |
|
263 | + * The effective yearly rate of an annual percentage rate when the |
|
264 | + * annual percentage rate is compounded periodically within the year. |
|
265 | + * |
|
266 | + * Same as the =EFFECT() function in most spreadsheet software. |
|
267 | + * |
|
268 | + * The formula: |
|
269 | + * https://en.wikipedia.org/wiki/Effective_interest_rate |
|
270 | + * |
|
271 | + * / i \ ᴺ |
|
272 | + * AER = | 1 + - | - 1 |
|
273 | + * \ n / |
|
274 | + * |
|
275 | + * Examples: |
|
276 | + * The AER of APR 3.5% interest compounded monthly. |
|
277 | + * aer(0.035, 12) |
|
278 | + * |
|
279 | + * @param float $nominal |
|
280 | + * @param int $periods |
|
281 | + * |
|
282 | + * @return float |
|
283 | + */ |
|
284 | + public static function aer(float $nominal, int $periods): float |
|
285 | + { |
|
286 | + if ($periods == 1) { |
|
287 | + return $nominal; |
|
288 | + } |
|
289 | + |
|
290 | + return \pow(1 + ($nominal / $periods), $periods) - 1; |
|
291 | + } |
|
292 | + |
|
293 | + /** |
|
294 | + * Annual Nominal Rate of an annual effective rate (AER). |
|
295 | + * The nominal yearly rate of an annual effective rate when the |
|
296 | + * annual effective rate is compounded periodically within the year. |
|
297 | + * |
|
298 | + * Same as the =NOMINAL() function in most spreadsheet software. |
|
299 | + * |
|
300 | + * See: |
|
301 | + * https://en.wikipedia.org/wiki/Nominal_interest_rate |
|
302 | + * |
|
303 | + * / 1/N \ |
|
304 | + * NOMINAL = | (AER + 1) -1 | * N |
|
305 | + * \ / |
|
306 | + * |
|
307 | + * Examples: |
|
308 | + * The nominal rate of AER 3.557% interest compounded monthly. |
|
309 | + * nominal(0.03557, 12) |
|
310 | + * |
|
311 | + * @param float $aer |
|
312 | + * @param int $periods |
|
313 | + * |
|
314 | + * @return float |
|
315 | + */ |
|
316 | + public static function nominal(float $aer, int $periods): float |
|
317 | + { |
|
318 | + if ($periods == 1) { |
|
319 | + return $aer; |
|
320 | + } |
|
321 | + |
|
322 | + return (\pow($aer + 1, 1 / $periods) - 1) * $periods; |
|
323 | + } |
|
324 | + |
|
325 | + /** |
|
326 | + * Future value for a loan or annuity with compound interest. |
|
327 | + * |
|
328 | + * Same as the =FV() function in most spreadsheet software. |
|
329 | + * |
|
330 | + * The basic future-value formula derivation: |
|
331 | + * https://en.wikipedia.org/wiki/Future_value |
|
332 | + * |
|
333 | + * PMT*((1+r)ᴺ - 1) |
|
334 | + * FV = -PV*(1+r)ᴺ - ---------------- |
|
335 | + * r |
|
336 | + * |
|
337 | + * The (1+r*when) factor adjusts the payment to the beginning or end |
|
338 | + * of the period. In the common case of a payment at the end of a period, |
|
339 | + * the factor is 1 and reduces to the formula above. Setting when=1 computes |
|
340 | + * an "annuity due" with an immediate payment. |
|
341 | + * |
|
342 | + * Examples: |
|
343 | + * The future value in 5 years on a 30-year fixed mortgage note of $265000 |
|
344 | + * at 3.5% interest paid at the end of every month. This is how much loan |
|
345 | + * principle would be outstanding: |
|
346 | + * fv(0.035/12, 5*12, 1189.97, -265000, false) |
|
347 | + * |
|
348 | + * The present_value is negative indicating money borrowed for the mortgage, |
|
349 | + * whereas payment is positive, indicating money that will be paid to the |
|
350 | + * mortgage. |
|
351 | + * |
|
352 | + * @param float $rate |
|
353 | + * @param int $periods |
|
354 | + * @param float $payment |
|
355 | + * @param float $present_value |
|
356 | + * @param bool $beginning adjust the payment to the beginning or end of the period |
|
357 | + * |
|
358 | + * @return float |
|
359 | + */ |
|
360 | + public static function fv(float $rate, int $periods, float $payment, float $present_value, bool $beginning = false): float |
|
361 | + { |
|
362 | + $when = $beginning ? 1 : 0; |
|
363 | + |
|
364 | + if ($rate == 0) { |
|
365 | + $fv = -($present_value + ($payment * $periods)); |
|
366 | + return self::checkZero($fv); |
|
367 | + } |
|
368 | + |
|
369 | + $initial = 1 + ($rate * $when); |
|
370 | + $compound = \pow(1 + $rate, $periods); |
|
371 | + $fv = - (($present_value * $compound) + (($payment * $initial * ($compound - 1)) / $rate)); |
|
372 | + |
|
373 | + return self::checkZero($fv); |
|
374 | + } |
|
375 | + |
|
376 | + /** |
|
377 | + * Present value for a loan or annuity with compound interest. |
|
378 | + * |
|
379 | + * Same as the =PV() function in most spreadsheet software. |
|
380 | + * |
|
381 | + * The basic present-value formula derivation: |
|
382 | + * https://en.wikipedia.org/wiki/Present_value |
|
383 | + * |
|
384 | + * PMT*((1+r)ᴺ - 1) |
|
385 | + * PV = -FV - ---------------- |
|
386 | + * r |
|
387 | + * --------------------- |
|
388 | + * (1 + r)ᴺ |
|
389 | + * |
|
390 | + * The (1+r*when) factor adjusts the payment to the beginning or end |
|
391 | + * of the period. In the common case of a payment at the end of a period, |
|
392 | + * the factor is 1 and reduces to the formula above. Setting when=1 computes |
|
393 | + * an "annuity due" with an immediate payment. |
|
394 | + * |
|
395 | + * Examples: |
|
396 | + * The present value of a bond's $1000 face value paid in 5 year's time |
|
397 | + * with a constant discount rate of 3.5% compounded monthly: |
|
398 | + * pv(0.035/12, 5*12, 0, -1000, false) |
|
399 | + * |
|
400 | + * The present value of a $1000 5-year bond that pays a fixed 7% ($70) |
|
401 | + * coupon at the end of each year with a discount rate of 5%: |
|
402 | + * pv(0.5, 5, -70, -1000, false) |
|
403 | + * |
|
404 | + * The payment and future_value is negative indicating money paid out. |
|
405 | + * |
|
406 | + * @param float $rate |
|
407 | + * @param int $periods |
|
408 | + * @param float $payment |
|
409 | + * @param float $future_value |
|
410 | + * @param bool $beginning adjust the payment to the beginning or end of the period |
|
411 | + * |
|
412 | + * @return float |
|
413 | + */ |
|
414 | + public static function pv(float $rate, int $periods, float $payment, float $future_value, bool $beginning = false): float |
|
415 | + { |
|
416 | + $when = $beginning ? 1 : 0; |
|
417 | + |
|
418 | + if ($rate == 0) { |
|
419 | + $pv = -$future_value - ($payment * $periods); |
|
420 | + return self::checkZero($pv); |
|
421 | + } |
|
422 | + |
|
423 | + $initial = 1 + ($rate * $when); |
|
424 | + $compound = \pow(1 + $rate, $periods); |
|
425 | + $pv = (-$future_value - (($payment * $initial * ($compound - 1)) / $rate)) / $compound; |
|
426 | + |
|
427 | + return self::checkZero($pv); |
|
428 | + } |
|
429 | + |
|
430 | + /** |
|
431 | + * Net present value of cash flows. Cash flows are periodic starting |
|
432 | + * from an initial time and with a uniform discount rate. |
|
433 | + * |
|
434 | + * Similar to the =NPV() function in most spreadsheet software, except |
|
435 | + * the initial (usually negative) cash flow at time 0 is given as the |
|
436 | + * first element of the array rather than subtracted. For example, |
|
437 | + * spreadsheet: =NPV(0.01, 100, 200, 300, 400) - 1000 |
|
438 | + * is done as |
|
439 | + * MathPHP::npv(0.01, [-1000, 100, 200, 300, 400]) |
|
440 | + * |
|
441 | + * The basic net-present-value formula derivation: |
|
442 | + * https://en.wikipedia.org/wiki/Net_present_value |
|
443 | + * |
|
444 | + * n Rt |
|
445 | + * Σ -------- |
|
446 | + * t=0 (1 / r)ᵗ |
|
447 | + * |
|
448 | + * Examples: |
|
449 | + * The net present value of 5 yearly cash flows after an initial $1000 |
|
450 | + * investment with a 3% discount rate: |
|
451 | + * npv(0.03, [-1000, 100, 500, 300, 700, 700]) |
|
452 | + * |
|
453 | + * @param float $rate |
|
454 | + * @param array<float> $values |
|
455 | + * |
|
456 | + * @return float |
|
457 | + */ |
|
458 | + public static function npv(float $rate, array $values): float |
|
459 | + { |
|
460 | + $result = 0.0; |
|
461 | + |
|
462 | + for ($i = 0; $i < \count($values); ++$i) { |
|
463 | + $result += $values[$i] / (1 + $rate) ** $i; |
|
464 | + } |
|
465 | + |
|
466 | + return $result; |
|
467 | + } |
|
468 | + |
|
469 | + /** |
|
470 | + * Interest rate per period of an Annuity. |
|
471 | + * |
|
472 | + * Same as the =RATE() formula in most spreadsheet software. |
|
473 | + * |
|
474 | + * The basic rate formula derivation is to solve for the future value |
|
475 | + * taking into account the present value: |
|
476 | + * https://en.wikipedia.org/wiki/Future_value |
|
477 | + * |
|
478 | + * ((1+r)ᴺ - 1) |
|
479 | + * FV + PV*(1+r)ᴺ + PMT * ------------ = 0 |
|
480 | + * r |
|
481 | + * The (1+r*when) factor adjusts the payment to the beginning or end |
|
482 | + * of the period. In the common case of a payment at the end of a period, |
|
483 | + * the factor is 1 and reduces to the formula above. Setting when=1 computes |
|
484 | + * an "annuity due" with an immediate payment. |
|
485 | + * |
|
486 | + * Not all solutions for the rate have real-value solutions or converge. |
|
487 | + * In these cases, NAN is returned. |
|
488 | + * |
|
489 | + * @param float $periods |
|
490 | + * @param float $payment |
|
491 | + * @param float $present_value |
|
492 | + * @param float $future_value |
|
493 | + * @param bool $beginning |
|
494 | + * @param float $initial_guess |
|
495 | + * |
|
496 | + * @return float |
|
497 | + */ |
|
498 | + public static function rate(float $periods, float $payment, float $present_value, float $future_value, bool $beginning = false, float $initial_guess = 0.1): float |
|
499 | + { |
|
500 | + $when = $beginning ? 1 : 0; |
|
501 | + |
|
502 | + $func = function ($x, $periods, $payment, $present_value, $future_value, $when) { |
|
503 | + return $future_value + $present_value * (1 + $x) ** $periods + $payment * (1 + $x * $when) / $x * ((1 + $x) ** $periods - 1); |
|
504 | + }; |
|
505 | + |
|
506 | + return self::checkZero(NumericalAnalysis\RootFinding\NewtonsMethod::solve($func, [$initial_guess, $periods, $payment, $present_value, $future_value, $when], 0, self::EPSILON, 0)); |
|
507 | + } |
|
508 | + |
|
509 | + /** |
|
510 | + * Internal rate of return. |
|
511 | + * Periodic rate of return that would provide a net-present value (NPV) of 0. |
|
512 | + * |
|
513 | + * Same as =IRR formula in most spreadsheet software. |
|
514 | + * |
|
515 | + * Reference: |
|
516 | + * https://en.wikipedia.org/wiki/Internal_rate_of_return |
|
517 | + * |
|
518 | + * Examples: |
|
519 | + * The rate of return of an initial investment of $100 with returns |
|
520 | + * of $50, $40, and $30: |
|
521 | + * irr([-100, 50, 40, 30]) |
|
522 | + * |
|
523 | + * Solves for NPV=0 using Newton's Method. |
|
524 | + * @param array<float> $values |
|
525 | + * @param float $initial_guess |
|
526 | + * |
|
527 | + * @return float |
|
528 | + * |
|
529 | + * @throws OutOfBoundsException |
|
530 | + * |
|
531 | + * @todo: Use eigenvalues to find the roots of a characteristic polynomial. |
|
532 | + * This will allow finding all solutions and eliminate the need of the initial_guess. |
|
533 | + */ |
|
534 | + public static function irr(array $values, float $initial_guess = 0.1): float |
|
535 | + { |
|
536 | + $func = function ($x, $values) { |
|
537 | + return Finance::npv($x, $values); |
|
538 | + }; |
|
539 | + |
|
540 | + if (\count($values) <= 1) { |
|
541 | + return \NAN; |
|
542 | + } |
|
543 | + |
|
544 | + $root = NumericalAnalysis\RootFinding\NewtonsMethod::solve($func, [$initial_guess, $values], 0, self::EPSILON, 0); |
|
545 | + if (!\is_nan($root)) { |
|
546 | + return self::CheckZero($root); |
|
547 | + } |
|
548 | + return self::checkZero(self::alternateIrr($values)); |
|
549 | + } |
|
550 | + |
|
551 | + /** |
|
552 | + * Alternate IRR implementation. |
|
553 | + * |
|
554 | + * A more numerically stable implementation that converges to only one value. |
|
555 | + * |
|
556 | + * Based off of Better: https://github.com/better/irr |
|
557 | + * |
|
558 | + * @param array<float> $values |
|
559 | + * |
|
560 | + * @return float |
|
561 | + */ |
|
562 | + private static function alternateIrr(array $values): float |
|
563 | + { |
|
564 | + $rate = 0.0; |
|
565 | + for ($iter = 0; $iter < 100; $iter++) { |
|
566 | + $m = -1000; |
|
567 | + for ($i = 0; $i < \count($values); $i++) { |
|
568 | + $m = \max($m, -$rate * $i); |
|
569 | + } |
|
570 | + $f = []; |
|
571 | + for ($i = 0; $i < \count($values); $i++) { |
|
572 | + $f[$i] = \exp(-$rate * $i - $m); |
|
573 | + } |
|
574 | + $t = 0; |
|
575 | + for ($i = 0; $i < \count($values); $i++) { |
|
576 | + $t += $f[$i] * $values[$i]; |
|
577 | + } |
|
578 | + if (\abs($t) < (self::EPSILON * \exp($m))) { |
|
579 | + break; |
|
580 | + } |
|
581 | + $u = 0; |
|
582 | + for ($i = 0; $i < \count($values); $i++) { |
|
583 | + $u += $f[$i] * $i * $values[$i]; |
|
584 | + } |
|
585 | + if ($u == 0) { |
|
586 | + return \NAN; |
|
587 | + } |
|
588 | + $rate += $t / $u; |
|
589 | + } |
|
590 | + return \exp($rate) - 1; |
|
591 | + } |
|
592 | + |
|
593 | + /** |
|
594 | + * Modified internal rate of return. |
|
595 | + * Rate of return that discounts outflows (investments) at the financing rate, |
|
596 | + * and reinvests inflows with an expected rate of return. |
|
597 | + * |
|
598 | + * Same as =MIRR formula in most spreadsheet software. |
|
599 | + * |
|
600 | + * The formula derivation: |
|
601 | + * https://en.wikipedia.org/wiki/Modified_internal_rate_of_return |
|
602 | + * |
|
603 | + * _____________________________ |
|
604 | + * n/ FV(re-invested cash inflows) |
|
605 | + * - / ---------------------------- - 1.0 |
|
606 | + * \/ PV(discounted cash outflows) |
|
607 | + * |
|
608 | + * Examples: |
|
609 | + * The rate of return of an initial investment of $100 at 5% financing |
|
610 | + * with returns of $50, $40, and $30 reinvested at 10%: |
|
611 | + * mirr([-100, 50, 40, 30], 0.05, 0.10) |
|
612 | + * |
|
613 | + * @param array<float> $values |
|
614 | + * @param float $finance_rate |
|
615 | + * @param float $reinvestment_rate |
|
616 | + * |
|
617 | + * @return float |
|
618 | + */ |
|
619 | + public static function mirr(array $values, float $finance_rate, float $reinvestment_rate): float |
|
620 | + { |
|
621 | + $inflows = array(); |
|
622 | + $outflows = array(); |
|
623 | + |
|
624 | + for ($i = 0; $i < \count($values); $i++) { |
|
625 | + if ($values[$i] >= 0) { |
|
626 | + $inflows[] = $values[$i]; |
|
627 | + $outflows[] = 0; |
|
628 | + } else { |
|
629 | + $inflows[] = 0; |
|
630 | + $outflows[] = $values[$i]; |
|
631 | + } |
|
632 | + } |
|
633 | + |
|
634 | + $nonzero = function ($x) { |
|
635 | + return $x != 0; |
|
636 | + }; |
|
637 | + |
|
638 | + if (\count(\array_filter($inflows, $nonzero)) == 0 || \count(\array_filter($outflows, $nonzero)) == 0) { |
|
639 | + return \NAN; |
|
640 | + } |
|
641 | + |
|
642 | + $root = \count($values) - 1; |
|
643 | + $pv_inflows = self::npv($reinvestment_rate, $inflows); |
|
644 | + $fv_inflows = self::fv($reinvestment_rate, $root, 0, -$pv_inflows); |
|
645 | + $pv_outflows = self::npv($finance_rate, $outflows); |
|
646 | + |
|
647 | + return self::checkZero(\pow($fv_inflows / -$pv_outflows, 1 / $root) - 1); |
|
648 | + } |
|
649 | + |
|
650 | + /** |
|
651 | + * Discounted Payback of an investment. |
|
652 | + * The number of periods to recoup cash outlays of an investment. |
|
653 | + * |
|
654 | + * This is commonly used with discount rate=0 as simple payback period, |
|
655 | + * but it is not a real financial measurement when it doesn't consider the |
|
656 | + * discount rate. Even with a discount rate, it doesn't consider the cost |
|
657 | + * of capital or re-investment of returns. |
|
658 | + * |
|
659 | + * Avoid this when possible. Consider NPV, MIRR, IRR, and other financial |
|
660 | + * functions. |
|
661 | + * |
|
662 | + * Reference: |
|
663 | + * https://en.wikipedia.org/wiki/Payback_period |
|
664 | + * |
|
665 | + * The result is given assuming cash flows are continous throughout a period. |
|
666 | + * To compute payback in terms of whole periods, use ceil() on the result. |
|
667 | + * |
|
668 | + * An investment could reach its payback period before future cash outlays occur. |
|
669 | + * The payback period returned is defined to be the final point at which the |
|
670 | + * sum of returns becomes positive. |
|
671 | + * |
|
672 | + * Examples: |
|
673 | + * The payback period of an investment with a $1,000 investment and future returns |
|
674 | + * of $100, $200, $300, $400, $500: |
|
675 | + * payback([-1000, 100, 200, 300, 400, 500]) |
|
676 | + * |
|
677 | + * The discounted payback period of an investment with a $1,000 investment, future returns |
|
678 | + * of $100, $200, $300, $400, $500, and a discount rate of 0.10: |
|
679 | + * payback([-1000, 100, 200, 300, 400, 500], 0.1) |
|
680 | + * |
|
681 | + * @param array<float> $values |
|
682 | + * @param float $rate |
|
683 | + * |
|
684 | + * @return float |
|
685 | + */ |
|
686 | + public static function payback(array $values, float $rate = 0.0): float |
|
687 | + { |
|
688 | + $last_outflow = -1; |
|
689 | + for ($i = 0; $i < \count($values); $i++) { |
|
690 | + if ($values[$i] < 0) { |
|
691 | + $last_outflow = $i; |
|
692 | + } |
|
693 | + } |
|
694 | + |
|
695 | + if ($last_outflow < 0) { |
|
696 | + return 0.0; |
|
697 | + } |
|
698 | + |
|
699 | + $sum = $values[0]; |
|
700 | + $payback_period = -1; |
|
701 | + |
|
702 | + for ($i = 1; $i < \count($values); $i++) { |
|
703 | + $prevsum = $sum; |
|
704 | + $discounted_flow = $values[$i] / (1 + $rate) ** $i; |
|
705 | + $sum += $discounted_flow; |
|
706 | + if ($sum >= 0) { |
|
707 | + if ($i > $last_outflow) { |
|
708 | + return ($i - 1) + (-$prevsum / $discounted_flow); |
|
709 | + } |
|
710 | + if ($payback_period == -1) { |
|
711 | + $payback_period = ($i - 1) + (-$prevsum / $discounted_flow); |
|
712 | + } |
|
713 | + } else { |
|
714 | + $payback_period = -1; |
|
715 | + } |
|
716 | + } |
|
717 | + if ($sum >= 0) { |
|
718 | + return $payback_period; |
|
719 | + } |
|
720 | + |
|
721 | + return \NAN; |
|
722 | + } |
|
723 | + |
|
724 | + /** |
|
725 | + * Profitability Index. |
|
726 | + * The Profitability Index, also referred to as Profit Investment |
|
727 | + * Ratio (PIR) and Value Investment Ratio (VIR), is a comparison of |
|
728 | + * discounted cash inflows to discounted cash outflows. It can be |
|
729 | + * used as a decision criteria of an investment, using larger than 1 |
|
730 | + * to choose an investment, and less than 1 to pass. |
|
731 | + * |
|
732 | + * The formula derivation: |
|
733 | + * https://en.wikipedia.org/wiki/Profitability_index |
|
734 | + * |
|
735 | + * PV(cash inflows) |
|
736 | + * ---------------- |
|
737 | + * PV(cash outflows) |
|
738 | + * |
|
739 | + * The formula is usually stated in terms of the initial investmest, |
|
740 | + * but it is generalized here to discount all future outflows. |
|
741 | + * |
|
742 | + * Examples: |
|
743 | + * The profitability index of an initial $100 investment with future |
|
744 | + * returns of $50, $50, $50 with a 10% discount rate: |
|
745 | + * profitabilityIndex([-100, 50, 50, 50], 0.10) |
|
746 | + * |
|
747 | + * @param array<float> $values |
|
748 | + * @param float $rate |
|
749 | + * |
|
750 | + * @return float |
|
751 | + */ |
|
752 | + public static function profitabilityIndex(array $values, float $rate): float |
|
753 | + { |
|
754 | + $inflows = array(); |
|
755 | + $outflows = array(); |
|
756 | + |
|
757 | + for ($i = 0; $i < \count($values); $i++) { |
|
758 | + if ($values[$i] >= 0) { |
|
759 | + $inflows[] = $values[$i]; |
|
760 | + $outflows[] = 0; |
|
761 | + } else { |
|
762 | + $inflows[] = 0; |
|
763 | + $outflows[] = -$values[$i]; |
|
764 | + } |
|
765 | + } |
|
766 | + |
|
767 | + $nonzero = function ($x) { |
|
768 | + return $x != 0; |
|
769 | + }; |
|
770 | + |
|
771 | + if (\count(\array_filter($outflows, $nonzero)) == 0) { |
|
772 | + return \NAN; |
|
773 | + } |
|
774 | + |
|
775 | + $pv_inflows = self::npv($rate, $inflows); |
|
776 | + $pv_outflows = self::npv($rate, $outflows); |
|
777 | + |
|
778 | + return $pv_inflows / $pv_outflows; |
|
779 | + } |
|
780 | 780 | } |
@@ -12,50 +12,50 @@ |
||
12 | 12 | */ |
13 | 13 | class NewtonsMethod |
14 | 14 | { |
15 | - /** |
|
16 | - * Use Newton's Method to find the x which produces $target = $function(x) value |
|
17 | - * $args is an array of parameters to pass to $function, but having the element that |
|
18 | - * will be changed and serve as the initial guess in position $position. |
|
19 | - * |
|
20 | - * @param callable $function f(x) callback function |
|
21 | - * @param array<mixed> $args Parameters to pass to callback function. The initial value for the |
|
22 | - * parameter of interest must be in this array. |
|
23 | - * @param int|float $target Value of f(x) we a trying to solve for |
|
24 | - * @param float $tol Tolerance; How close to the actual solution we would like. |
|
25 | - * @param int $position Which element in the $args array will be changed; also serves as initial guess |
|
26 | - * @param int $iterations |
|
27 | - * |
|
28 | - * @return int|float |
|
29 | - * |
|
30 | - * @throws Exception\OutOfBoundsException if the tolerance is not valid |
|
31 | - */ |
|
32 | - public static function solve(callable $function, array $args, $target, float $tol, int $position = 0, int $iterations = 100) |
|
33 | - { |
|
34 | - Validation::tolerance($tol); |
|
15 | + /** |
|
16 | + * Use Newton's Method to find the x which produces $target = $function(x) value |
|
17 | + * $args is an array of parameters to pass to $function, but having the element that |
|
18 | + * will be changed and serve as the initial guess in position $position. |
|
19 | + * |
|
20 | + * @param callable $function f(x) callback function |
|
21 | + * @param array<mixed> $args Parameters to pass to callback function. The initial value for the |
|
22 | + * parameter of interest must be in this array. |
|
23 | + * @param int|float $target Value of f(x) we a trying to solve for |
|
24 | + * @param float $tol Tolerance; How close to the actual solution we would like. |
|
25 | + * @param int $position Which element in the $args array will be changed; also serves as initial guess |
|
26 | + * @param int $iterations |
|
27 | + * |
|
28 | + * @return int|float |
|
29 | + * |
|
30 | + * @throws Exception\OutOfBoundsException if the tolerance is not valid |
|
31 | + */ |
|
32 | + public static function solve(callable $function, array $args, $target, float $tol, int $position = 0, int $iterations = 100) |
|
33 | + { |
|
34 | + Validation::tolerance($tol); |
|
35 | 35 | |
36 | - // Initialize |
|
37 | - $args1 = $args; |
|
38 | - $guess = $args[$position]; |
|
39 | - $i = 0; |
|
36 | + // Initialize |
|
37 | + $args1 = $args; |
|
38 | + $guess = $args[$position]; |
|
39 | + $i = 0; |
|
40 | 40 | |
41 | - do { |
|
42 | - $args1[$position] = $guess + $tol; // load the initial guess into the arguments |
|
43 | - $args[$position] = $guess; // load the initial guess into the arguments |
|
44 | - $y = $function(...$args); |
|
45 | - $y_at_xplusdelx = $function(...$args1); |
|
46 | - $slope = ($y_at_xplusdelx - $y) / $tol; |
|
47 | - $del_y = $target - $y; |
|
48 | - if (\abs($slope) < $tol) { |
|
49 | - return \NAN; |
|
50 | - } |
|
51 | - $guess = $del_y / $slope + $guess; |
|
52 | - $dif = \abs($del_y); |
|
53 | - $i++; |
|
54 | - } while ($dif > $tol && $i < $iterations); |
|
41 | + do { |
|
42 | + $args1[$position] = $guess + $tol; // load the initial guess into the arguments |
|
43 | + $args[$position] = $guess; // load the initial guess into the arguments |
|
44 | + $y = $function(...$args); |
|
45 | + $y_at_xplusdelx = $function(...$args1); |
|
46 | + $slope = ($y_at_xplusdelx - $y) / $tol; |
|
47 | + $del_y = $target - $y; |
|
48 | + if (\abs($slope) < $tol) { |
|
49 | + return \NAN; |
|
50 | + } |
|
51 | + $guess = $del_y / $slope + $guess; |
|
52 | + $dif = \abs($del_y); |
|
53 | + $i++; |
|
54 | + } while ($dif > $tol && $i < $iterations); |
|
55 | 55 | |
56 | - if ($dif > $tol) { |
|
57 | - return \NAN; |
|
58 | - } |
|
59 | - return $guess; |
|
60 | - } |
|
56 | + if ($dif > $tol) { |
|
57 | + return \NAN; |
|
58 | + } |
|
59 | + return $guess; |
|
60 | + } |
|
61 | 61 | } |
@@ -9,32 +9,32 @@ |
||
9 | 9 | */ |
10 | 10 | class Validation |
11 | 11 | { |
12 | - /** |
|
13 | - * Throw an exception if the tolerance is negative. |
|
14 | - * |
|
15 | - * @param int|float $tol Tolerance; How close to the actual solution we would like. |
|
16 | - * |
|
17 | - * @throws Exception\OutOfBoundsException if $tol (the tolerance) is negative |
|
18 | - */ |
|
19 | - public static function tolerance($tol): void |
|
20 | - { |
|
21 | - if ($tol < 0) { |
|
22 | - throw new Exception\OutOfBoundsException('Tolerance must be greater than zero.'); |
|
23 | - } |
|
24 | - } |
|
12 | + /** |
|
13 | + * Throw an exception if the tolerance is negative. |
|
14 | + * |
|
15 | + * @param int|float $tol Tolerance; How close to the actual solution we would like. |
|
16 | + * |
|
17 | + * @throws Exception\OutOfBoundsException if $tol (the tolerance) is negative |
|
18 | + */ |
|
19 | + public static function tolerance($tol): void |
|
20 | + { |
|
21 | + if ($tol < 0) { |
|
22 | + throw new Exception\OutOfBoundsException('Tolerance must be greater than zero.'); |
|
23 | + } |
|
24 | + } |
|
25 | 25 | |
26 | - /** |
|
27 | - * Verify that the start and end of of an interval are distinct numbers. |
|
28 | - * |
|
29 | - * @param int|float $a The start of the interval |
|
30 | - * @param int|float $b The end of the interval |
|
31 | - * |
|
32 | - * @throws Exception\BadDataException if $a = $b |
|
33 | - */ |
|
34 | - public static function interval($a, $b): void |
|
35 | - { |
|
36 | - if ($a === $b) { |
|
37 | - throw new Exception\BadDataException('Start point and end point of interval cannot be the same.'); |
|
38 | - } |
|
39 | - } |
|
26 | + /** |
|
27 | + * Verify that the start and end of of an interval are distinct numbers. |
|
28 | + * |
|
29 | + * @param int|float $a The start of the interval |
|
30 | + * @param int|float $b The end of the interval |
|
31 | + * |
|
32 | + * @throws Exception\BadDataException if $a = $b |
|
33 | + */ |
|
34 | + public static function interval($a, $b): void |
|
35 | + { |
|
36 | + if ($a === $b) { |
|
37 | + throw new Exception\BadDataException('Start point and end point of interval cannot be the same.'); |
|
38 | + } |
|
39 | + } |
|
40 | 40 | } |