1
|
|
|
""" |
2
|
|
|
.. module:: statistics |
3
|
|
|
:platform: Unix |
4
|
|
|
:synopsis: Contains and processes statistics information for each plugin. |
5
|
|
|
|
6
|
|
|
.. moduleauthor::Jacob Williamson <[email protected]> |
7
|
|
|
|
8
|
|
|
""" |
9
|
|
|
|
10
|
|
|
from savu.plugins.savers.utils.hdf5_utils import Hdf5Utils |
11
|
|
|
|
12
|
|
|
import h5py as h5 |
13
|
|
|
import numpy as np |
14
|
|
|
import os |
15
|
|
|
|
16
|
|
|
|
17
|
|
|
class Statistics(object): |
18
|
|
|
index_dict = {"max": 0, "min": 1, "mean": 2, "mean_std_dev": 3, "median_std_dev": 4} |
19
|
|
|
key_list = ["max", "min", "mean", "mean_std_dev", "median_std_dev"] |
20
|
|
|
pattern_list = ["SINOGRAM", "PROJECTION", "VOLUME_YZ", "VOLUME_XZ", "VOLUME_XY", "VOLUME_3D", "4D_SCAN", "SINOMOVIE"] |
21
|
|
|
no_stats_plugins = ["BasicOperations", "Mipmap"] |
22
|
|
|
|
23
|
|
|
def __init__(self, plugin_self): |
24
|
|
|
self.plugin = plugin_self |
25
|
|
|
self.plugin_name = plugin_self.name |
26
|
|
|
self.pad_dims = [] |
27
|
|
|
self.stats = {'max': [], 'min': [], 'mean': [], 'standard_deviation': []} |
28
|
|
|
self.calc_stats = False |
29
|
|
|
self._set_pattern_info() |
30
|
|
|
if self.plugin_name in Statistics.no_stats_plugins: |
31
|
|
|
self.calc_stats = False |
32
|
|
|
|
33
|
|
|
@classmethod |
34
|
|
|
def _setup(cls, exp): |
35
|
|
|
"""Sets up the statistics class for the whole experiment (only called once)""" |
36
|
|
|
cls.count = 2 |
37
|
|
|
cls.data_stats = {} |
38
|
|
|
cls.volume_stats = {} |
39
|
|
|
cls.global_stats = {} |
40
|
|
|
n_plugins = len(exp.meta_data.plugin_list.plugin_list) |
41
|
|
|
# for n in range(n_plugins): |
42
|
|
|
# cls.data_stats[n + 1] = [None, None, None, None, None] |
43
|
|
|
# cls.volume_stats[n + 1] = [None, None, None, None, None] |
44
|
|
|
cls.path = exp.meta_data['out_path'] |
45
|
|
|
if cls.path[-1] == '/': |
46
|
|
|
cls.path = cls.path[0:-1] |
47
|
|
|
cls.path = f"{cls.path}/stats" |
48
|
|
|
if not os.path.exists(cls.path): |
49
|
|
|
os.mkdir(cls.path) |
50
|
|
|
|
51
|
|
|
def set_slice_stats(self, slice1): |
52
|
|
|
"""Appends slice stats arrays with the stats parameters of the current slice. |
53
|
|
|
|
54
|
|
|
:param slice1: The slice whose stats are being calculated. |
55
|
|
|
""" |
56
|
|
|
if slice1 is not None: |
57
|
|
|
slice_num = self.plugin.pcount |
58
|
|
|
slice1 = self._de_list(slice1) |
59
|
|
|
slice1 = self._unpad_slice(slice1) |
60
|
|
|
self.stats['max'].append(slice1.max()) |
61
|
|
|
self.stats['min'].append(slice1.min()) |
62
|
|
|
self.stats['mean'].append(np.mean(slice1)) |
63
|
|
|
self.stats['standard_deviation'].append(np.std(slice1)) |
64
|
|
|
|
65
|
|
|
def get_slice_stats(self, stat, slice_num): |
66
|
|
|
"""Returns array of stats associated with the processed slices of the current plugin.""" |
67
|
|
|
return self.stats[stat][slice_num] |
68
|
|
|
|
69
|
|
|
def set_volume_stats(self): |
70
|
|
|
"""Calculates volume-wide statistics from slice stats, and updates class-wide arrays with these values. |
71
|
|
|
Links volume stats with the output dataset and writes slice stats to file. |
72
|
|
|
""" |
73
|
|
|
p_num = Statistics.count |
74
|
|
|
name = self.plugin_name |
75
|
|
|
i = 2 |
76
|
|
|
while name in list(Statistics.global_stats.keys()): |
77
|
|
|
name = self.plugin_name + str(i) |
78
|
|
|
i += 1 |
79
|
|
|
Statistics.data_stats[p_num] = [None, None, None, None, None] |
80
|
|
|
Statistics.volume_stats[p_num] = [None, None, None, None, None] |
81
|
|
|
if len(self.stats['max']) != 0: |
82
|
|
|
if self.pattern in ['PROJECTION', 'SINOGRAM', 'TANGENTOGRAM', 'SINOMOVIE', '4D_SCAN']: |
83
|
|
|
Statistics.data_stats[p_num][0] = max(self.stats['max']) |
84
|
|
|
Statistics.data_stats[p_num][1] = min(self.stats['min']) |
85
|
|
|
Statistics.data_stats[p_num][2] = np.mean(self.stats['mean']) |
86
|
|
|
Statistics.data_stats[p_num][3] = np.mean(self.stats['standard_deviation']) |
87
|
|
|
Statistics.data_stats[p_num][4] = np.median(self.stats['standard_deviation']) |
88
|
|
|
Statistics.global_stats[p_num] = Statistics.data_stats[p_num] |
89
|
|
|
Statistics.global_stats[name] = Statistics.global_stats[p_num] |
90
|
|
|
self._link_stats_to_datasets(Statistics.global_stats[name]) |
91
|
|
|
elif self.pattern in ['VOLUME_XZ', 'VOLUME_XY', 'VOLUME_YZ', 'VOLUME_3D']: |
92
|
|
|
Statistics.volume_stats[p_num][0] = max(self.stats['max']) |
93
|
|
|
Statistics.volume_stats[p_num][1] = min(self.stats['min']) |
94
|
|
|
Statistics.volume_stats[p_num][2] = np.mean(self.stats['mean']) |
95
|
|
|
Statistics.volume_stats[p_num][3] = np.mean(self.stats['standard_deviation']) |
96
|
|
|
Statistics.volume_stats[p_num][4] = np.median(self.stats['standard_deviation']) |
97
|
|
|
Statistics.global_stats[p_num] = Statistics.volume_stats[p_num] |
98
|
|
|
Statistics.global_stats[name] = Statistics.global_stats[p_num] |
99
|
|
|
self._link_stats_to_datasets(Statistics.global_stats[name]) |
100
|
|
|
slice_stats = np.array([self.stats['max'], self.stats['min'], self.stats['mean'], |
101
|
|
|
self.stats['standard_deviation']]) |
102
|
|
|
self._write_stats_to_file(slice_stats, p_num) |
103
|
|
|
|
104
|
|
|
def get_stats(self, plugin_name, n=None, stat=None): |
105
|
|
|
"""Returns stats associated with a certain plugin. |
106
|
|
|
|
107
|
|
|
:param plugin_name: name of the plugin whose associated stats are being fetched. |
108
|
|
|
:param n: In a case where there are multiple instances of <plugin_name> in the process list, |
109
|
|
|
specify the nth instance. Not specifying will select the first (or only) instance. |
110
|
|
|
:param stat: Specify the stat parameter you want to fetch, i.e 'max', 'mean', 'median_std_dev'. |
111
|
|
|
If left blank will return the whole dictionary of stats: |
112
|
|
|
{'max': ,'min': ,'mean': ,'mean_std_dev': ,'median_std_dev': } |
113
|
|
|
""" |
114
|
|
|
name = plugin_name |
115
|
|
|
if n is not None and n not in (0, 1): |
116
|
|
|
name = name + str(n) |
117
|
|
|
if stat is not None: |
118
|
|
|
i = Statistics.index_dict[stat] |
119
|
|
|
return Statistics.global_stats[name][i] |
120
|
|
|
else: |
121
|
|
|
stats = dict(zip(Statistics.key_list, Statistics.global_stats[name])) |
122
|
|
|
return stats |
123
|
|
|
|
124
|
|
|
def get_stats_from_num(self, p_num, stat=None): |
125
|
|
|
"""Returns stats associated with a certain plugin, given the plugin number (its place in the process list). |
126
|
|
|
|
127
|
|
|
:param p_num: Plugin number of the plugin whose associated stats are being fetched. |
128
|
|
|
If p_num <= 0, it is relative to the plugin number of the current plugin being run. |
129
|
|
|
E.g current plugin number = 5, p_num = -2 --> will return stats of the third plugin. |
130
|
|
|
:param stat: Specify the stat parameter you want to fetch, i.e 'max', 'mean', 'median_std_dev'. |
131
|
|
|
If left blank will return the whole dictionary of stats: |
132
|
|
|
{'max': ,'min': ,'mean': ,'mean_std_dev': ,'median_std_dev': } |
133
|
|
|
""" |
134
|
|
|
if p_num <= 0: |
135
|
|
|
p_num = Statistics.count + p_num |
136
|
|
|
if stat is not None: |
137
|
|
|
i = Statistics.index_dict[stat] |
138
|
|
|
return Statistics.global_stats[p_num][i] |
139
|
|
|
else: |
140
|
|
|
stats = dict(zip(Statistics.key_list, Statistics.global_stats[p_num])) |
141
|
|
|
return stats |
142
|
|
|
|
143
|
|
|
def get_stats_from_dataset(self, dataset, stat=None, set_num=None): |
144
|
|
|
"""Returns stats associated with a dataset. |
145
|
|
|
|
146
|
|
|
:param dataset: The dataset whose associated stats are being fetched. |
147
|
|
|
:param stat: Specify the stat parameter you want to fetch, i.e 'max', 'mean', 'median_std_dev'. |
148
|
|
|
If left blank will return the whole dictionary of stats: |
149
|
|
|
{'max': ,'min': ,'mean': ,'mean_std_dev': ,'median_std_dev': } |
150
|
|
|
:param set_num: In the (rare) case that there are multiple sets of stats associated with the dataset, |
151
|
|
|
specify which set to return. |
152
|
|
|
""" |
153
|
|
|
key = "stats" |
154
|
|
|
stats = {} |
155
|
|
|
if set_num is not None: |
156
|
|
|
key = key + str(set_num) |
157
|
|
|
if key in list(dataset.meta_data.dict.keys()): |
158
|
|
|
stats = dataset.meta_data.get(key) |
159
|
|
|
if stat is not None: |
160
|
|
|
return stats[stat] |
161
|
|
|
else: |
162
|
|
|
return stats |
163
|
|
|
|
164
|
|
|
def get_data_stats(self): |
165
|
|
|
return Statistics.data_stats |
166
|
|
|
|
167
|
|
|
def get_volume_stats(self): |
168
|
|
|
return Statistics.volume_stats |
169
|
|
|
|
170
|
|
|
def get_global_stats(self): |
171
|
|
|
return Statistics.global_stats |
172
|
|
|
|
173
|
|
|
def _set_pattern_info(self): |
174
|
|
|
"""Gathers information about the pattern of the data in the current plugin.""" |
175
|
|
|
in_datasets, out_datasets = self.plugin.get_datasets() |
176
|
|
|
try: |
177
|
|
|
self.pattern = self.plugin.parameters['pattern'] |
178
|
|
|
if self.pattern == None: |
179
|
|
|
raise KeyError |
180
|
|
|
except KeyError: |
181
|
|
|
if not out_datasets: |
182
|
|
|
self.pattern = None |
183
|
|
|
else: |
184
|
|
|
patterns = out_datasets[0].get_data_patterns() |
185
|
|
|
for pattern in patterns: |
186
|
|
|
if 1 in patterns.get(pattern)["slice_dims"]: |
187
|
|
|
self.pattern = pattern |
188
|
|
|
break |
189
|
|
|
for dataset in out_datasets: |
190
|
|
|
if bool(set(Statistics.pattern_list) & set(dataset.data_info.get("data_patterns"))): |
191
|
|
|
self.calc_stats = True |
192
|
|
|
|
193
|
|
|
def _link_stats_to_datasets(self, stats): |
194
|
|
|
"""Links the volume wide statistics to the output dataset(s)""" |
195
|
|
|
out_datasets = self.plugin.get_out_datasets() |
196
|
|
|
n_datasets = self.plugin.nOutput_datasets() |
197
|
|
|
i = 1 |
198
|
|
|
group_name = "stats" |
199
|
|
|
if n_datasets == 1: |
200
|
|
|
while group_name in list(out_datasets[0].meta_data.get_dictionary().keys()): |
201
|
|
|
group_name = f"stats{i}" |
202
|
|
|
i += 1 |
203
|
|
|
out_datasets[0].data_info.set([group_name, "max"], stats[0]) |
204
|
|
|
out_datasets[0].data_info.set([group_name, "min"], stats[1]) |
205
|
|
|
out_datasets[0].data_info.set([group_name, "mean"], stats[2]) |
206
|
|
|
out_datasets[0].data_info.set([group_name, "mean_std_dev"], stats[3]) |
207
|
|
|
out_datasets[0].data_info.set([group_name, "median_std_dev"], stats[4]) |
208
|
|
|
|
209
|
|
|
def _write_stats_to_file(self, slice_stats, p_num): |
210
|
|
|
"""Writes slice statistics to a h5 file""" |
211
|
|
|
path = Statistics.path |
212
|
|
|
filename = f"{path}/stats_p{p_num}_{self.plugin_name}.h5" |
213
|
|
|
slice_stats_dim = (slice_stats.shape[1],) |
214
|
|
|
self.hdf5 = Hdf5Utils(self.plugin.exp) |
215
|
|
|
with h5.File(filename, "a") as h5file: |
216
|
|
|
i = 1 |
217
|
|
|
group_name = "/stats" |
218
|
|
|
while group_name in h5file: |
219
|
|
|
group_name = f"/stats{i}" |
220
|
|
|
i += 1 |
221
|
|
|
group = h5file.create_group(group_name, track_order=None) |
222
|
|
|
max_ds = self.hdf5.create_dataset_nofill(group, "max", slice_stats_dim, slice_stats.dtype) |
223
|
|
|
min_ds = self.hdf5.create_dataset_nofill(group, "min", slice_stats_dim, slice_stats.dtype) |
224
|
|
|
mean_ds = self.hdf5.create_dataset_nofill(group, "mean", slice_stats_dim, slice_stats.dtype) |
225
|
|
|
standard_deviation_ds = self.hdf5.create_dataset_nofill(group, "standard_deviation", |
226
|
|
|
slice_stats_dim, slice_stats.dtype) |
227
|
|
|
max_ds[::] = slice_stats[0] |
228
|
|
|
min_ds[::] = slice_stats[1] |
229
|
|
|
mean_ds[::] = slice_stats[2] |
230
|
|
|
standard_deviation_ds[::] = slice_stats[3] |
231
|
|
|
|
232
|
|
|
def _unpad_slice(self, slice1): |
233
|
|
|
"""If data is padded in the slice dimension, removes this pad.""" |
234
|
|
|
out_datasets = self.plugin.get_out_datasets() |
235
|
|
|
if len(out_datasets) == 1: |
236
|
|
|
out_dataset = out_datasets[0] |
237
|
|
|
else: |
238
|
|
|
for dataset in out_datasets: |
239
|
|
|
if self.pattern in list(dataset.data_info.get(["data_patterns"]).keys()): |
240
|
|
|
out_dataset = dataset |
241
|
|
|
break |
242
|
|
|
slice_dims = out_dataset.get_slice_dimensions() |
|
|
|
|
243
|
|
|
if self.plugin.pcount == 0: |
244
|
|
|
self.slice_list, self.pad = self._get_unpadded_slice_list(slice1, slice_dims) |
245
|
|
|
if self.pad: |
246
|
|
|
for slice_dim in slice_dims: |
247
|
|
|
temp_slice = np.swapaxes(slice1, 0, slice_dim) |
248
|
|
|
temp_slice = temp_slice[self.slice_list[slice_dim]] |
249
|
|
|
slice1 = np.swapaxes(temp_slice, 0, slice_dim) |
250
|
|
|
return slice1 |
251
|
|
|
|
252
|
|
|
def _get_unpadded_slice_list(self, slice1, slice_dims): |
253
|
|
|
"""Creates slice object(s) to un-pad slices in the slice dimension(s).""" |
254
|
|
|
slice_list = list(self.plugin.slice_list[0]) |
255
|
|
|
pad = False |
256
|
|
|
if len(slice_list) == len(slice1.shape): |
257
|
|
|
for i in slice_dims: |
258
|
|
|
slice_width = self.plugin.slice_list[0][i].stop - self.plugin.slice_list[0][i].start |
259
|
|
|
if slice_width != slice1.shape[i]: |
260
|
|
|
pad = True |
261
|
|
|
pad_width = (slice1.shape[i] - slice_width) // 2 # Assuming symmetrical padding |
262
|
|
|
slice_list[i] = slice(pad_width, pad_width + 1, 1) |
263
|
|
|
return tuple(slice_list), pad |
264
|
|
|
else: |
265
|
|
|
return self.plugin.slice_list[0], pad |
266
|
|
|
|
267
|
|
|
def _de_list(self, slice1): |
268
|
|
|
"""If the slice is in a list, remove it from that list.""" |
269
|
|
|
if type(slice1) == list: |
270
|
|
|
if len(slice1) != 0: |
271
|
|
|
slice1 = slice1[0] |
272
|
|
|
slice1 = self._de_list(slice1) |
273
|
|
|
return slice1 |
274
|
|
|
|
275
|
|
|
@classmethod |
276
|
|
|
def _count(cls): |
277
|
|
|
cls.count += 1 |
278
|
|
|
|
279
|
|
|
@classmethod |
280
|
|
|
def _post_chain(cls): |
281
|
|
|
print(cls.data_stats) |
282
|
|
|
print(cls.volume_stats) |
283
|
|
|
print(cls.global_stats) |