1
|
|
|
# Copyright 2014 Diamond Light Source Ltd. |
2
|
|
|
# |
3
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
4
|
|
|
# you may not use this file except in compliance with the License. |
5
|
|
|
# You may obtain a copy of the License at |
6
|
|
|
# |
7
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0 |
8
|
|
|
# |
9
|
|
|
# Unless required by applicable law or agreed to in writing, software |
10
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS, |
11
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
12
|
|
|
# See the License for the specific language governing permissions and |
13
|
|
|
# limitations under the License. |
14
|
|
|
|
15
|
|
|
""" |
16
|
|
|
.. module:: Point-spread-function correction |
17
|
|
|
:platform: Unix |
18
|
|
|
:synopsis: A plugin for MTF (modulation transfer function) deconvolution\ |
19
|
|
|
or PSF (point spread function) correction in the Fourier domain. |
20
|
|
|
.. moduleauthor:: Nghia Vo <[email protected]> |
21
|
|
|
|
22
|
|
|
""" |
23
|
|
|
import os |
24
|
|
|
import logging |
25
|
|
|
import numpy as np |
26
|
|
|
from PIL import Image |
27
|
|
|
import pyfftw.interfaces.scipy_fftpack as fft |
28
|
|
|
from savu.plugins.plugin import Plugin |
29
|
|
|
from savu.plugins.driver.cpu_plugin import CpuPlugin |
30
|
|
|
from savu.plugins.utils import register_plugin |
31
|
|
|
from savu.data.plugin_list import CitationInformation |
32
|
|
|
import savu.test.test_utils as tu |
33
|
|
|
import savu.core.utils as cu |
34
|
|
|
|
35
|
|
|
|
36
|
|
|
|
37
|
|
|
@register_plugin |
38
|
|
|
class MtfDeconvolution(Plugin, CpuPlugin): |
39
|
|
|
""" |
40
|
|
|
Method to correct the point-spread-function effect. \ |
41
|
|
|
Working on raw projections and flats. |
42
|
|
|
:u*param file_path: Path to file containing a 2D array of a MTF function. \ |
43
|
|
|
File formats: 'npy', or 'tif'. Default: None. |
44
|
|
|
:param pad_width: Pad the image before the deconvolution. Default: 128. |
45
|
|
|
|
46
|
|
|
""" |
47
|
|
|
|
48
|
|
|
def __init__(self): |
49
|
|
|
super(MtfDeconvolution, self).__init__("MtfDeconvolution") |
50
|
|
|
|
51
|
|
|
def load_image(self, file_path): |
52
|
|
|
""" |
53
|
|
|
Load data from an image. |
54
|
|
|
""" |
55
|
|
|
mat = None |
56
|
|
|
try: |
57
|
|
|
mat = np.asarray(Image.open(file_path), dtype = np.float32) |
58
|
|
|
except IOError: |
59
|
|
|
raise ValueError("No such file or directory {}".format(file_path)) |
60
|
|
|
if len(mat.shape) > 2: |
61
|
|
|
axis_m = np.argmin(mat.shape) |
62
|
|
|
mat = np.mean(mat, axis=axis_m) |
63
|
|
|
return mat |
64
|
|
|
|
65
|
|
|
def check_file_path(self, file_path): |
66
|
|
|
file_ext = ".tif" |
67
|
|
|
if file_path is None: |
68
|
|
|
msg = "!!! Please provide a file path to the MTF !!!" |
69
|
|
|
logging.warning(msg) |
70
|
|
|
cu.user_message(msg) |
71
|
|
|
raise ValueError(msg) |
72
|
|
|
else: |
73
|
|
|
if not os.path.isfile(file_path): |
74
|
|
|
msg = "!!! No such file: %s !!!"\ |
75
|
|
|
" Please check the file path" %str(file_path) |
76
|
|
|
logging.warning(msg) |
77
|
|
|
cu.user_message(msg) |
78
|
|
|
raise ValueError(msg) |
79
|
|
|
else: |
80
|
|
|
_, file_ext = os.path.splitext(file_path) |
81
|
|
|
return file_ext |
82
|
|
|
|
83
|
|
|
def psf_correction(self, mat, win, pad_width): |
84
|
|
|
(nrow, ncol) = mat.shape |
85
|
|
|
mat_pad = np.pad(mat, pad_width, mode = "reflect") |
86
|
|
|
win_pad = np.pad(win, pad_width, mode = "constant", constant_values=1.0) |
87
|
|
|
mat_dec = fft.ifft2(fft.fft2(mat_pad) / fft.ifftshift(win_pad)) |
88
|
|
|
return np.abs(mat_dec)[pad_width:pad_width+nrow,pad_width:pad_width+ncol] |
89
|
|
|
|
90
|
|
|
def setup(self): |
91
|
|
|
in_dataset, out_dataset = self.get_datasets() |
92
|
|
|
out_dataset[0].create_dataset(in_dataset[0], raw=True) |
93
|
|
|
in_pData, out_pData = self.get_plugin_datasets() |
94
|
|
|
in_pData[0].plugin_data_setup('PROJECTION','single') |
95
|
|
|
out_pData[0].plugin_data_setup('PROJECTION','single') |
96
|
|
|
|
97
|
|
|
def pre_process(self): |
98
|
|
|
inData = self.get_in_datasets()[0] |
99
|
|
|
dark = inData.data.dark() |
100
|
|
|
flat = inData.data.flat() |
101
|
|
|
self.data_size = inData.get_shape() |
102
|
|
|
(self.depth, self.height, self.width) = flat.shape |
103
|
|
|
file_path = self.get_conf_path() |
104
|
|
|
file_ext = self.check_file_path(file_path) |
105
|
|
|
if file_ext==".npy": |
106
|
|
|
try: |
107
|
|
|
self.mtf_array = 1.0*np.load(file_path) |
108
|
|
|
except IOError: |
109
|
|
|
msg = "\n*****************************************\n"\ |
110
|
|
|
"!!! ERROR !!! -> Can't open this file: %s \n"\ |
111
|
|
|
"*****************************************\n\ |
112
|
|
|
" % str(file_path) |
113
|
|
|
logging.warning(msg) |
114
|
|
|
cu.user_message(msg) |
115
|
|
|
raise ValueError(msg) |
116
|
|
|
else: |
117
|
|
|
try: |
118
|
|
|
self.mtf_array = 1.0*np.float32(self.load_image(file_path)) |
119
|
|
|
except IOError: |
120
|
|
|
msg = "\n*****************************************\n"\ |
121
|
|
|
"!!! ERROR !!! -> Can't open this file: %s \n"\ |
122
|
|
|
"*****************************************\n\ |
123
|
|
|
" % str(file_path) |
124
|
|
|
logging.warning(msg) |
125
|
|
|
cu.user_message(msg) |
126
|
|
|
raise ValueError(msg) |
127
|
|
|
|
128
|
|
|
self.mtf_array[self.mtf_array<=0.0] = 1.0 |
129
|
|
|
self.mtf_array = self.mtf_array/np.max(self.mtf_array) |
130
|
|
|
(height_mtf, width_mtf) = self.mtf_array.shape |
131
|
|
|
if (self.height != height_mtf) or (self.width != width_mtf): |
132
|
|
|
msg = "\n*****************************************\n"\ |
133
|
|
|
"!!! ERROR !!!-> Projection shape: ({0},{1}) is not the same as "\ |
134
|
|
|
"the mtf shape: ({2},{3})".format( |
135
|
|
|
self.height, self.width, height_mtf, width_mtf) |
136
|
|
|
logging.warning(msg) |
137
|
|
|
cu.user_message(msg) |
138
|
|
|
raise ValueError(msg) |
139
|
|
|
|
140
|
|
|
self.pad_width = np.clip(int(self.parameters["pad_width"]), 0, None) |
141
|
|
|
if flat.size: |
142
|
|
|
flat_updated = np.ones_like(flat, dtype=np.float32) |
143
|
|
|
for i in np.arange(self.depth): |
144
|
|
|
flat_updated[i] = self.psf_correction( |
145
|
|
|
flat[i], self.mtf_array, self.pad_width) |
146
|
|
|
inData.data.update_flat(flat_updated) |
147
|
|
|
|
148
|
|
|
def process_frames(self, data): |
149
|
|
|
return self.psf_correction(data[0], self.mtf_array, self.pad_width) |
150
|
|
|
|
151
|
|
|
def get_conf_path(self): |
152
|
|
|
path = self.parameters["file_path"] |
153
|
|
|
if path.split(os.sep)[0] == 'Savu': |
154
|
|
|
path = tu.get_test_data_path(path.split('/test_data/data')[1]) |
155
|
|
|
return path |
156
|
|
|
|
157
|
|
|
def get_citation_information(self): |
158
|
|
|
cite_info = CitationInformation() |
159
|
|
|
cite_info.description = \ |
160
|
|
|
("The PSF correction used in this plugin is taken\ |
161
|
|
|
from this work.") |
162
|
|
|
cite_info.bibtex = ("@inproceedings{10.1117/12.2530324,\n"\ |
163
|
|
|
"author = {Nghia T. Vo and Robert C. Atwood "\ |
164
|
|
|
"and Michael Drakopoulos},\n"\ |
165
|
|
|
"title = {{Preprocessing techniques for removing artifacts in "\ |
166
|
|
|
"synchrotron-based tomographic images}},\n"\ |
167
|
|
|
"volume = {11113},\n"\ |
168
|
|
|
"booktitle = {Developments in X-Ray Tomography XII},\n"\ |
169
|
|
|
"editor = {Bert Muller and Ge Wang},\n"\ |
170
|
|
|
"organization = {International Society for Optics and Photonics},\n"\ |
171
|
|
|
"publisher = {SPIE},\n"\ |
172
|
|
|
"pages = {309 -- 328},\n"\ |
173
|
|
|
"year = {2019},\n"\ |
174
|
|
|
"doi = {10.1117/12.2530324},\n"\ |
175
|
|
|
"URL = {https://doi.org/10.1117/12.2530324}\n"\ |
176
|
|
|
"}") |
177
|
|
|
cite_info.doi = "doi: DOI: 10.1117/12.2530324" |
178
|
|
|
return cite_info |
179
|
|
|
|